A Framework for CSI-Based Indoor Localization with 1D Convolutional
Neural Networks
- URL: http://arxiv.org/abs/2205.08068v1
- Date: Tue, 17 May 2022 03:04:47 GMT
- Title: A Framework for CSI-Based Indoor Localization with 1D Convolutional
Neural Networks
- Authors: Liping Wang, Sudeep Pasricha
- Abstract summary: We propose an end-to-end solution including data collection, pattern clustering, denoising, calibration and a lightweight one-dimensional convolutional neural network (1D CNN) model with CSI fingerprinting to tackle this problem.
Experiments indicate that our approach achieves up to 68.5% improved performance with minimal number of parameters, compared to the best-known deep machine learning and CSI-based indoor localization works.
- Score: 4.812445272764651
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Modern indoor localization techniques are essential to overcome the weak GPS
coverage in indoor environments. Recently, considerable progress has been made
in Channel State Information (CSI) based indoor localization with signal
fingerprints. However, CSI signal patterns can be complicated in the large and
highly dynamic indoor spaces with complex interiors, thus a solution for
solving this issue is urgently needed to expand the applications of CSI to a
broader indoor space. In this paper, we propose an end-to-end solution
including data collection, pattern clustering, denoising, calibration and a
lightweight one-dimensional convolutional neural network (1D CNN) model with
CSI fingerprinting to tackle this problem. We have also created and plan to
open source a CSI dataset with a large amount of data collected across complex
indoor environments at Colorado State University. Experiments indicate that our
approach achieves up to 68.5% improved performance (mean distance error) with
minimal number of parameters, compared to the best-known deep machine learning
and CSI-based indoor localization works.
Related papers
- Enabling High Data Throughput Reinforcement Learning on GPUs: A Domain Agnostic Framework for Data-Driven Scientific Research [90.91438597133211]
We introduce WarpSci, a framework designed to overcome crucial system bottlenecks in the application of reinforcement learning.
We eliminate the need for data transfer between the CPU and GPU, enabling the concurrent execution of thousands of simulations.
arXiv Detail & Related papers (2024-08-01T21:38:09Z) - Diffusion-based Data Augmentation for Object Counting Problems [62.63346162144445]
We develop a pipeline that utilizes a diffusion model to generate extensive training data.
We are the first to generate images conditioned on a location dot map with a diffusion model.
Our proposed counting loss for the diffusion model effectively minimizes the discrepancies between the location dot map and the crowd images generated.
arXiv Detail & Related papers (2024-01-25T07:28:22Z) - A Variational Auto-Encoder Enabled Multi-Band Channel Prediction Scheme
for Indoor Localization [11.222977249913411]
We provide a scheme to improve the accuracy of indoor fingerprint localization from the frequency domain.
We tested our proposed scheme on COST 2100 simulation data and real time frequency division multiplexing (OFDM) WiFi data collected from an office scenario.
arXiv Detail & Related papers (2023-09-19T08:19:34Z) - Transferability of Convolutional Neural Networks in Stationary Learning
Tasks [96.00428692404354]
We introduce a novel framework for efficient training of convolutional neural networks (CNNs) for large-scale spatial problems.
We show that a CNN trained on small windows of such signals achieves a nearly performance on much larger windows without retraining.
Our results show that the CNN is able to tackle problems with many hundreds of agents after being trained with fewer than ten.
arXiv Detail & Related papers (2023-07-21T13:51:45Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
We employ transfer learning to improve training efficiency for large-scale spatial problems.
We propose that a convolutional neural network (CNN) can be trained on small windows of signals, but evaluated on arbitrarily large signals with little to no performance degradation.
arXiv Detail & Related papers (2023-06-14T01:24:42Z) - Simple and Effective Augmentation Methods for CSI Based Indoor
Localization [37.3026733673066]
We propose two algorithms for channel state information based indoor localization motivated by physical considerations.
As little as 10% of the original dataset size is enough to get the same performance as the original dataset.
If we further augment the dataset with the proposed techniques, test accuracy is improved more than three-fold.
arXiv Detail & Related papers (2022-11-19T20:27:46Z) - On the Multidimensional Augmentation of Fingerprint Data for Indoor
Localization in A Large-Scale Building Complex Based on Multi-Output Gaussian
Process [3.8310036898137296]
Wi-Fi fingerprinting becomes a dominant solution for large-scale indoor localization.
The number and the distribution of Reference Points (RPs) for the measurement of localization fingerprints greatly affects the accuracy.
Data augmentation has been proposed as a feasible solution to improve the smaller number and the uneven distribution of RPs.
arXiv Detail & Related papers (2022-11-19T10:07:17Z) - CSI-based Indoor Localization via Attention-Augmented Residual
Convolutional Neural Network [38.826117059245895]
This paper presents a new localization system with high accuracy and generality.
We propose a novel attention-augmented Residual CNN to utilize the local information and global context in CSI exhaustively.
Consider the generality of a tracking system, we decouple the tracking system from the CSI environments so that one tracking system for all environments becomes possible.
arXiv Detail & Related papers (2022-05-11T21:11:05Z) - CLNet: Complex Input Lightweight Neural Network designed for Massive
MIMO CSI Feedback [7.63185216082836]
This paper presents a novel neural network CLNet tailored for CSI feedback problem based on the intrinsic properties of CSI.
The experiment result shows that CLNet outperforms the state-of-the-art method by average accuracy improvement of 5.41% in both outdoor and indoor scenarios.
arXiv Detail & Related papers (2021-02-15T12:16:11Z) - Zero-Shot Multi-View Indoor Localization via Graph Location Networks [66.05980368549928]
indoor localization is a fundamental problem in location-based applications.
We propose a novel neural network based architecture Graph Location Networks (GLN) to perform infrastructure-free, multi-view image based indoor localization.
GLN makes location predictions based on robust location representations extracted from images through message-passing networks.
We introduce a novel zero-shot indoor localization setting and tackle it by extending the proposed GLN to a dedicated zero-shot version.
arXiv Detail & Related papers (2020-08-06T07:36:55Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.