Transferability of Convolutional Neural Networks in Stationary Learning
Tasks
- URL: http://arxiv.org/abs/2307.11588v1
- Date: Fri, 21 Jul 2023 13:51:45 GMT
- Title: Transferability of Convolutional Neural Networks in Stationary Learning
Tasks
- Authors: Damian Owerko, Charilaos I. Kanatsoulis, Jennifer Bondarchuk, Donald
J. Bucci Jr, Alejandro Ribeiro
- Abstract summary: We introduce a novel framework for efficient training of convolutional neural networks (CNNs) for large-scale spatial problems.
We show that a CNN trained on small windows of such signals achieves a nearly performance on much larger windows without retraining.
Our results show that the CNN is able to tackle problems with many hundreds of agents after being trained with fewer than ten.
- Score: 96.00428692404354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in hardware and big data acquisition have accelerated the
development of deep learning techniques. For an extended period of time,
increasing the model complexity has led to performance improvements for various
tasks. However, this trend is becoming unsustainable and there is a need for
alternative, computationally lighter methods. In this paper, we introduce a
novel framework for efficient training of convolutional neural networks (CNNs)
for large-scale spatial problems. To accomplish this we investigate the
properties of CNNs for tasks where the underlying signals are stationary. We
show that a CNN trained on small windows of such signals achieves a nearly
performance on much larger windows without retraining. This claim is supported
by our theoretical analysis, which provides a bound on the performance
degradation. Additionally, we conduct thorough experimental analysis on two
tasks: multi-target tracking and mobile infrastructure on demand. Our results
show that the CNN is able to tackle problems with many hundreds of agents after
being trained with fewer than ten. Thus, CNN architectures provide solutions to
these problems at previously computationally intractable scales.
Related papers
- Algebraic Representations for Faster Predictions in Convolutional Neural Networks [0.0]
Convolutional neural networks (CNNs) are a popular choice of model for tasks in computer vision.
skip connections may be added to create an easier gradient optimization problem.
We show that arbitrarily complex, trained, linear CNNs with skip connections can be simplified into a single-layer model.
arXiv Detail & Related papers (2024-08-14T21:10:05Z) - Mobile Traffic Prediction at the Edge through Distributed and Transfer
Learning [2.687861184973893]
The research in this topic concentrated on making predictions in a centralized fashion, by collecting data from the different network elements.
We propose a novel prediction framework based on edge computing which uses datasets obtained on the edge through a large measurement campaign.
arXiv Detail & Related papers (2023-10-22T23:48:13Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
We employ transfer learning to improve training efficiency for large-scale spatial problems.
We propose that a convolutional neural network (CNN) can be trained on small windows of signals, but evaluated on arbitrarily large signals with little to no performance degradation.
arXiv Detail & Related papers (2023-06-14T01:24:42Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Towards a General Purpose CNN for Long Range Dependencies in
$\mathrm{N}$D [49.57261544331683]
We propose a single CNN architecture equipped with continuous convolutional kernels for tasks on arbitrary resolution, dimensionality and length without structural changes.
We show the generality of our approach by applying the same CCNN to a wide set of tasks on sequential (1$mathrmD$) and visual data (2$mathrmD$)
Our CCNN performs competitively and often outperforms the current state-of-the-art across all tasks considered.
arXiv Detail & Related papers (2022-06-07T15:48:02Z) - Application of 2-D Convolutional Neural Networks for Damage Detection in
Steel Frame Structures [0.0]
We present an application of 2-D convolutional neural networks (2-D CNNs) designed to perform both feature extraction and classification stages.
The method uses a network of lighted CNNs instead of deep and takes raw acceleration signals as input.
arXiv Detail & Related papers (2021-10-29T16:29:31Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.