Landing AI on Networks: An equipment vendor viewpoint on Autonomous
Driving Networks
- URL: http://arxiv.org/abs/2205.08347v1
- Date: Tue, 26 Apr 2022 16:51:00 GMT
- Title: Landing AI on Networks: An equipment vendor viewpoint on Autonomous
Driving Networks
- Authors: Dario Rossi and Liang Zhang
- Abstract summary: We discuss challenges and opportunities of Autonomous Driving Network (ADN) driven by AI technologies.
To understand how AI can be successfully landed in current and future networks, we start by outlining challenges that are specific to the networking domain.
We then present a system view, clarifying how AI can be fitted in the network architecture.
- Score: 13.157685146274002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The tremendous achievements of Artificial Intelligence (AI) in computer
vision, natural language processing, games and robotics, has extended the reach
of the AI hype to other fields: in telecommunication networks, the long term
vision is to let AI fully manage, and autonomously drive, all aspects of
network operation. In this industry vision paper, we discuss challenges and
opportunities of Autonomous Driving Network (ADN) driven by AI technologies. To
understand how AI can be successfully landed in current and future networks, we
start by outlining challenges that are specific to the networking domain,
putting them in perspective with advances that AI has achieved in other fields.
We then present a system view, clarifying how AI can be fitted in the network
architecture. We finally discuss current achievements as well as future
promises of AI in networks, mentioning a roadmap to avoid bumps in the road
that leads to true large-scale deployment of AI technologies in networks.
Related papers
- Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces.
While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks.
This paper revisits the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems.
arXiv Detail & Related papers (2024-04-29T04:51:05Z) - Towards an AI-Enhanced Cyber Threat Intelligence Processing Pipeline [0.0]
This paper explores the potential of integrating Artificial Intelligence (AI) into Cyber Threat Intelligence (CTI)
We provide a blueprint of an AI-enhanced CTI processing pipeline, and detail its components and functionalities.
We discuss ethical dilemmas, potential biases, and the imperative for transparency in AI-driven decisions.
arXiv Detail & Related papers (2024-03-05T19:03:56Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Ten Years after ImageNet: A 360{\deg} Perspective on AI [36.9586431868379]
It is ten years since neural networks made their spectacular comeback.
The dominance of AI by Big-Tech who control talent, computing resources, and data may lead to an extreme AI divide.
Failure to meet high expectations in high profile, and much heralded flagship projects like self-driving vehicles could trigger another AI winter.
arXiv Detail & Related papers (2022-10-01T01:41:17Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Embodied AI-Driven Operation of Smart Cities: A Concise Review [3.441021278275805]
Embodied AI focuses on learning through interaction with the surrounding environment.
We will go through its definitions, its characteristics, and its current achievements along with different algorithms, approaches, and solutions.
We will then explore all the available simulators and 3D interactable databases that will make the research in this area feasible.
arXiv Detail & Related papers (2021-08-22T19:14:59Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks.
Artificial intelligence (AI) is growing rapidly nowadays and has been very successful.
We provide a comprehensive overview of some potential applications of AI in UAV-based networks.
arXiv Detail & Related papers (2020-09-24T07:11:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.