Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things
- URL: http://arxiv.org/abs/2011.08612v1
- Date: Tue, 17 Nov 2020 13:14:28 GMT
- Title: Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things
- Authors: Jing Zhang and Dacheng Tao
- Abstract summary: We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
- Score: 98.10037444792444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the Internet of Things (IoT) era, billions of sensors and devices collect
and process data from the environment, transmit them to cloud centers, and
receive feedback via the internet for connectivity and perception. However,
transmitting massive amounts of heterogeneous data, perceiving complex
environments from these data, and then making smart decisions in a timely
manner are difficult. Artificial intelligence (AI), especially deep learning,
is now a proven success in various areas including computer vision, speech
recognition, and natural language processing. AI introduced into the IoT
heralds the era of artificial intelligence of things (AIoT). This paper
presents a comprehensive survey on AIoT to show how AI can empower the IoT to
make it faster, smarter, greener, and safer. Specifically, we briefly present
the AIoT architecture in the context of cloud computing, fog computing, and
edge computing. Then, we present progress in AI research for IoT from four
perspectives: perceiving, learning, reasoning, and behaving. Next, we summarize
some promising applications of AIoT that are likely to profoundly reshape our
world. Finally, we highlight the challenges facing AIoT and some potential
research opportunities.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Artificial Intelligence of Things: A Survey [14.204632921719933]
The integration of the Internet of Things (IoT) and modern Artificial Intelligence (AI) has given rise to a new paradigm known as the Artificial Intelligence of Things (AIoT)
We examine AIoT literature related to sensing, computing, and networking & communication, which form the three key components of AIoT.
In addition to advancements in these areas, we review domain-specific AIoT systems that are designed for various important application domains.
arXiv Detail & Related papers (2024-10-25T22:45:58Z) - Towards an AI-Enhanced Cyber Threat Intelligence Processing Pipeline [0.0]
This paper explores the potential of integrating Artificial Intelligence (AI) into Cyber Threat Intelligence (CTI)
We provide a blueprint of an AI-enhanced CTI processing pipeline, and detail its components and functionalities.
We discuss ethical dilemmas, potential biases, and the imperative for transparency in AI-driven decisions.
arXiv Detail & Related papers (2024-03-05T19:03:56Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - Deep Edge Intelligence: Architecture, Key Features, Enabling
Technologies and Challenges [0.0]
We present a novel computing vision named Deep Edge Intelligence (DEI)
It employs Deep Learning, Artificial Intelligence, Cloud and Edge Computing, 5G/6G networks, Internet of Things, Microservices, etc.
It aims to provision reliable and secure intelligence services to every person and organisation at any place with better user experience.
arXiv Detail & Related papers (2022-10-24T04:18:57Z) - Artificial Intelligence for the Metaverse: A Survey [66.57225253532748]
We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse.
We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse.
Several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds.
arXiv Detail & Related papers (2022-02-15T03:34:56Z) - Embodied AI-Driven Operation of Smart Cities: A Concise Review [3.441021278275805]
Embodied AI focuses on learning through interaction with the surrounding environment.
We will go through its definitions, its characteristics, and its current achievements along with different algorithms, approaches, and solutions.
We will then explore all the available simulators and 3D interactable databases that will make the research in this area feasible.
arXiv Detail & Related papers (2021-08-22T19:14:59Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.