Semi-Supervised Building Footprint Generation with Feature and Output
Consistency Training
- URL: http://arxiv.org/abs/2205.08416v1
- Date: Tue, 17 May 2022 14:55:13 GMT
- Title: Semi-Supervised Building Footprint Generation with Feature and Output
Consistency Training
- Authors: Qingyu Li, Yilei Shi, Xiao Xiang Zhu
- Abstract summary: State-of-the-art semi-supervised semantic segmentation networks with consistency training can help to deal with this issue.
We propose to integrate the consistency of both features and outputs in the end-to-end network training of unlabeled samples.
Experimental results show that the proposed approach can well extract more complete building structures.
- Score: 17.6179873429447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and reliable building footprint maps are vital to urban planning and
monitoring, and most existing approaches fall back on convolutional neural
networks (CNNs) for building footprint generation. However, one limitation of
these methods is that they require strong supervisory information from massive
annotated samples for network learning. State-of-the-art semi-supervised
semantic segmentation networks with consistency training can help to deal with
this issue by leveraging a large amount of unlabeled data, which encourages the
consistency of model output on data perturbation. Considering that rich
information is also encoded in feature maps, we propose to integrate the
consistency of both features and outputs in the end-to-end network training of
unlabeled samples, enabling to impose additional constraints. Prior
semi-supervised semantic segmentation networks have established the cluster
assumption, in which the decision boundary should lie in the vicinity of low
sample density. In this work, we observe that for building footprint
generation, the low-density regions are more apparent at the intermediate
feature representations within the encoder than the encoder's input or output.
Therefore, we propose an instruction to assign the perturbation to the
intermediate feature representations within the encoder, which considers the
spatial resolution of input remote sensing imagery and the mean size of
individual buildings in the study area. The proposed method is evaluated on
three datasets with different resolutions: Planet dataset (3 m/pixel),
Massachusetts dataset (1 m/pixel), and Inria dataset (0.3 m/pixel).
Experimental results show that the proposed approach can well extract more
complete building structures and alleviate omission errors.
Related papers
- Mesh Denoising Transformer [104.5404564075393]
Mesh denoising is aimed at removing noise from input meshes while preserving their feature structures.
SurfaceFormer is a pioneering Transformer-based mesh denoising framework.
New representation known as Local Surface Descriptor captures local geometric intricacies.
Denoising Transformer module receives the multimodal information and achieves efficient global feature aggregation.
arXiv Detail & Related papers (2024-05-10T15:27:43Z) - Towards the Uncharted: Density-Descending Feature Perturbation for Semi-supervised Semantic Segmentation [51.66997548477913]
We propose a novel feature-level consistency learning framework named Density-Descending Feature Perturbation (DDFP)
Inspired by the low-density separation assumption in semi-supervised learning, our key insight is that feature density can shed a light on the most promising direction for the segmentation classifier to explore.
The proposed DDFP outperforms other designs on feature-level perturbations and shows state of the art performances on both Pascal VOC and Cityscapes dataset.
arXiv Detail & Related papers (2024-03-11T06:59:05Z) - Revisiting Generative Adversarial Networks for Binary Semantic
Segmentation on Imbalanced Datasets [20.538287907723713]
Anomalous crack region detection is a typical binary semantic segmentation task, which aims to detect pixels representing cracks on pavement surface images automatically by algorithms.
Existing deep learning-based methods have achieved outcoming results on specific public pavement datasets, but the performance would deteriorate dramatically on imbalanced datasets.
We propose a deep learning framework based on conditional Generative Adversarial Networks (cGANs) for the anomalous crack region detection tasks at the pixel level.
arXiv Detail & Related papers (2024-02-03T19:24:40Z) - Improved distinct bone segmentation in upper-body CT through
multi-resolution networks [0.39583175274885335]
In distinct bone segmentation from upper body CTs a large field of view and a computationally taxing 3D architecture are required.
This leads to low-resolution results lacking detail or localisation errors due to missing spatial context.
We propose end-to-end trainable segmentation networks that combine several 3D U-Nets working at different resolutions.
arXiv Detail & Related papers (2023-01-31T14:46:16Z) - Semi-signed neural fitting for surface reconstruction from unoriented
point clouds [53.379712818791894]
We propose SSN-Fitting to reconstruct a better signed distance field.
SSN-Fitting consists of a semi-signed supervision and a loss-based region sampling strategy.
We conduct experiments to demonstrate that SSN-Fitting achieves state-of-the-art performance under different settings.
arXiv Detail & Related papers (2022-06-14T09:40:17Z) - TC-Net: Triple Context Network for Automated Stroke Lesion Segmentation [0.5482532589225552]
We propose a new network, Triple Context Network (TC-Net), with the capture of spatial contextual information as the core.
Our network is evaluated on the open dataset ATLAS, achieving the highest score of 0.594, Hausdorff distance of 27.005 mm, and average symmetry surface distance of 7.137 mm.
arXiv Detail & Related papers (2022-02-28T11:12:16Z) - Guided Point Contrastive Learning for Semi-supervised Point Cloud
Semantic Segmentation [90.2445084743881]
We present a method for semi-supervised point cloud semantic segmentation to adopt unlabeled point clouds in training to boost the model performance.
Inspired by the recent contrastive loss in self-supervised tasks, we propose the guided point contrastive loss to enhance the feature representation and model generalization ability.
arXiv Detail & Related papers (2021-10-15T16:38:54Z) - S3Net: 3D LiDAR Sparse Semantic Segmentation Network [1.330528227599978]
S3Net is a novel convolutional neural network for LiDAR point cloud semantic segmentation.
It adopts an encoder-decoder backbone that consists of Sparse Intra-channel Attention Module (SIntraAM) and Sparse Inter-channel Attention Module (SInterAM)
arXiv Detail & Related papers (2021-03-15T22:15:24Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Improving Monocular Depth Estimation by Leveraging Structural Awareness
and Complementary Datasets [21.703238902823937]
We propose a structure-aware neural network with spatial attention blocks to exploit the spatial relationship of visual features.
Second, we introduce a global focal relative loss for uniform point pairs to enhance spatial constraint in the prediction.
Third, based on analysis of failure cases for prior methods, we collect a new Hard Case (HC) Depth dataset of challenging scenes.
arXiv Detail & Related papers (2020-07-22T08:21:02Z) - Semi-Supervised Crowd Counting via Self-Training on Surrogate Tasks [50.78037828213118]
This paper tackles the semi-supervised crowd counting problem from the perspective of feature learning.
We propose a novel semi-supervised crowd counting method which is built upon two innovative components.
arXiv Detail & Related papers (2020-07-07T05:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.