Mesh Denoising Transformer
- URL: http://arxiv.org/abs/2405.06536v1
- Date: Fri, 10 May 2024 15:27:43 GMT
- Title: Mesh Denoising Transformer
- Authors: Wenbo Zhao, Xianming Liu, Deming Zhai, Junjun Jiang, Xiangyang Ji,
- Abstract summary: Mesh denoising is aimed at removing noise from input meshes while preserving their feature structures.
SurfaceFormer is a pioneering Transformer-based mesh denoising framework.
New representation known as Local Surface Descriptor captures local geometric intricacies.
Denoising Transformer module receives the multimodal information and achieves efficient global feature aggregation.
- Score: 104.5404564075393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mesh denoising, aimed at removing noise from input meshes while preserving their feature structures, is a practical yet challenging task. Despite the remarkable progress in learning-based mesh denoising methodologies in recent years, their network designs often encounter two principal drawbacks: a dependence on single-modal geometric representations, which fall short in capturing the multifaceted attributes of meshes, and a lack of effective global feature aggregation, hindering their ability to fully understand the mesh's comprehensive structure. To tackle these issues, we propose SurfaceFormer, a pioneering Transformer-based mesh denoising framework. Our first contribution is the development of a new representation known as Local Surface Descriptor, which is crafted by establishing polar systems on each mesh face, followed by sampling points from adjacent surfaces using geodesics. The normals of these points are organized into 2D patches, mimicking images to capture local geometric intricacies, whereas the poles and vertex coordinates are consolidated into a point cloud to embody spatial information. This advancement surmounts the hurdles posed by the irregular and non-Euclidean characteristics of mesh data, facilitating a smooth integration with Transformer architecture. Next, we propose a dual-stream structure consisting of a Geometric Encoder branch and a Spatial Encoder branch, which jointly encode local geometry details and spatial information to fully explore multimodal information for mesh denoising. A subsequent Denoising Transformer module receives the multimodal information and achieves efficient global feature aggregation through self-attention operators. Our experimental evaluations demonstrate that this novel approach outperforms existing state-of-the-art methods in both objective and subjective assessments, marking a significant leap forward in mesh denoising.
Related papers
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.
Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.
In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Double-Shot 3D Shape Measurement with a Dual-Branch Network [14.749887303860717]
We propose a dual-branch Convolutional Neural Network (CNN)-Transformer network (PDCNet) to process different structured light (SL) modalities.
Within PDCNet, a Transformer branch is used to capture global perception in the fringe images, while a CNN branch is designed to collect local details in the speckle images.
We show that our method can reduce fringe order ambiguity while producing high-accuracy results on a self-made dataset.
arXiv Detail & Related papers (2024-07-19T10:49:26Z) - UGMAE: A Unified Framework for Graph Masked Autoencoders [67.75493040186859]
We propose UGMAE, a unified framework for graph masked autoencoders.
We first develop an adaptive feature mask generator to account for the unique significance of nodes.
We then design a ranking-based structure reconstruction objective joint with feature reconstruction to capture holistic graph information.
arXiv Detail & Related papers (2024-02-12T19:39:26Z) - C2F2NeUS: Cascade Cost Frustum Fusion for High Fidelity and
Generalizable Neural Surface Reconstruction [12.621233209149953]
We introduce a novel integration scheme that combines the multi-view stereo with neural signed distance function representations.
Our method reconstructs robust surfaces and outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2023-06-16T17:56:16Z) - SUMD: Super U-shaped Matrix Decomposition Convolutional neural network
for Image denoising [0.0]
We introduce the matrix decomposition module(MD) in the network to establish the global context feature.
Inspired by the design of multi-stage progressive restoration of U-shaped architecture, we further integrate the MD module into the multi-branches.
Our model(SUMD) can produce comparable visual quality and accuracy results with Transformer-based methods.
arXiv Detail & Related papers (2022-04-11T04:38:34Z) - Learning Graph-Convolutional Representations for Point Cloud Denoising [31.557988478764997]
We propose a deep neural network that can deal with the permutation-invariance problem encountered by learning-based point cloud processing methods.
The network is fully-convolutional and can build complex hierarchies of features by dynamically constructing neighborhood graphs.
It is especially robust both at high noise levels and in presence of structured noise such as the one encountered in real LiDAR scans.
arXiv Detail & Related papers (2020-07-06T08:11:28Z) - Neural Subdivision [58.97214948753937]
This paper introduces Neural Subdivision, a novel framework for data-driven coarseto-fine geometry modeling.
We optimize for the same set of network weights across all local mesh patches, thus providing an architecture that is not constrained to a specific input mesh, fixed genus, or category.
We demonstrate that even when trained on a single high-resolution mesh our method generates reasonable subdivisions for novel shapes.
arXiv Detail & Related papers (2020-05-04T20:03:21Z) - A Rotation-Invariant Framework for Deep Point Cloud Analysis [132.91915346157018]
We introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs.
Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure.
We evaluate our method on multiple point cloud analysis tasks, including shape classification, part segmentation, and shape retrieval.
arXiv Detail & Related papers (2020-03-16T14:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.