Size-Reduction of Rydberg collective excited states in cold atomic
system
- URL: http://arxiv.org/abs/2205.08680v1
- Date: Wed, 18 May 2022 01:33:09 GMT
- Title: Size-Reduction of Rydberg collective excited states in cold atomic
system
- Authors: Dong-Sheng Ding, Yi-Chen Yu, Zong-Kai Liu, Bao-Sen Shi, and Guang-Can
Guo
- Abstract summary: When a collective excited state of a group of atoms during Rabi oscillation is varying, the oscillation exhibits rich dynamics.
Here, we experimentally observe a size-reduction effect of the Rydberg collective state during Rabi oscillation in cold atomic dilute gases.
Results show the potential prospects of studying the dynamics of the collective effect of a large amount of atoms and manipulating a single-photon wave-packet based on the interaction between light and Rydberg atoms.
- Score: 1.2722697496405464
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The collective effect of large amounts of atoms exhibit an enhanced
interaction between light and atoms. This holds great interest in quantum
optics, and quantum information. When a collective excited state of a group of
atoms during Rabi oscillation is varying, the oscillation exhibits rich
dynamics. Here, we experimentally observe a size-reduction effect of the
Rydberg collective state during Rabi oscillation in cold atomic dilute gases.
The Rydberg collective state was first created by the Rydberg quantum memory,
and we observed a decreased oscillation frequency effect by measuring the time
traces of the retrieved light field amplitude, which exhibited chirped
characteristics. This is caused by the simultaneous decay to the overall ground
state and the overall loss of atoms. The observed oscillations are dependent on
the effective Rabi frequency and detuning of the coupling laser, and the
dephasing from inhomogeneous broadening. The reported results show the
potential prospects of studying the dynamics of the collective effect of a
large amount of atoms and manipulating a single-photon wave-packet based on the
interaction between light and Rydberg atoms.
Related papers
- Non-Markovian Collective Emission of Giant emitters in the Zeno Regime [0.0]
We explore the collective Zeno dynamics of giant artificial atoms that are coupled, via multiple coupling points, to a common photonic or acoustic reservoir.
We reveal that giant atoms build up their collective emission smoothly from the decay rate of zero to that predicted by Markovian approximation.
Our results might be probed in state-of-art waveguide QED experiments, and fundamentally broaden the fields of collective emission in systems with giant atoms.
arXiv Detail & Related papers (2024-06-21T01:22:40Z) - Interaction-Enhanced Superradiance of a Ryderg-Atom Array [1.891992751120761]
We study the superradiant phase transition of an array of Rydberg atoms in a dissipative microwave cavity.
Under the interplay of the cavity field and the long-range Rydberg interaction, the steady state of the system exhibits an interaction-enhanced superradiance.
arXiv Detail & Related papers (2024-05-03T09:19:13Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Many-body radiative decay in strongly interacting Rydberg ensembles [0.0]
When atoms are excited to high-lying Rydberg states they interact strongly with dipolar forces.
We show that these interactions have also a significant impact on dissipative effects caused by the inevitable coupling of Rydberg atoms to the surrounding electromagnetic field.
We discuss how this collective dissipation - stemming from a mechanism different from the much studied super- and sub-radiance - accelerates decoherence and affects dissipative phase transitions in Rydberg ensembles.
arXiv Detail & Related papers (2022-06-06T18:30:52Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Anderson localization of a Rydberg electron [68.8204255655161]
Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom.
limit is reached by simultaneously increasing the number of ground state atoms and the level of excitation of the Rydberg atom.
arXiv Detail & Related papers (2021-11-19T18:01:24Z) - Real-time detection of Rydberg state dynamics of cold atoms using an
optical cavity [0.0]
This work reports on the real-time detection of internal-state dynamics of cold Rb$87$ atoms excited to the $30D_5/2$ Rydberg state via two-photon excitation.
Results contribute to solving a recent controversy on the interplay between BBR-induced superradiance and Rydberg atom interactions.
arXiv Detail & Related papers (2021-09-30T08:24:04Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Collective emission of photons from dense, dipole-dipole interacting
atomic ensembles [0.0]
We study the collective radiation properties of cold, trapped ensembles of atoms.
We find that the emission rate of a photon from an excited atomic ensemble is strongly enhanced for an elongated cloud.
arXiv Detail & Related papers (2020-09-18T06:44:02Z) - Quantum time dilation in atomic spectra [62.997667081978825]
We demonstrate how quantum time dilation manifests in a spontaneous emission process.
The resulting emission rate differs when compared to the emission rate of an atom prepared in a mixture of momentum wave packets.
We argue that spectroscopic experiments offer a technologically feasible platform to explore the effects of quantum time dilation.
arXiv Detail & Related papers (2020-06-17T18:03:38Z) - Optical Magnetometer: Quantum Resonances at pumping repetition rate of
1/n of the Larmor frequency [58.720142291102135]
Quantum sub-resonances at a repetition rate of $1/n$ of the Larmor frequency of the magnetic field inside the shield are experimentally observed and theoretically explained.
Investigations in single alkali atoms cells as well as mixed alkali atoms of K and Rb are presented.
arXiv Detail & Related papers (2020-02-20T09:14:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.