Interaction-Enhanced Superradiance of a Ryderg-Atom Array
- URL: http://arxiv.org/abs/2405.01945v2
- Date: Sun, 19 May 2024 06:02:31 GMT
- Title: Interaction-Enhanced Superradiance of a Ryderg-Atom Array
- Authors: Yiwen Han, Haowei Li, Wei Yi,
- Abstract summary: We study the superradiant phase transition of an array of Rydberg atoms in a dissipative microwave cavity.
Under the interplay of the cavity field and the long-range Rydberg interaction, the steady state of the system exhibits an interaction-enhanced superradiance.
- Score: 1.891992751120761
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We study the superradiant phase transition of an array of Rydberg atoms in a dissipative microwave cavity. Under the interplay of the cavity field and the long-range Rydberg interaction, the steady state of the system exhibits an interaction-enhanced superradiance, with vanishing critical atom-cavity coupling rates at a discrete set of interaction strengths. We find that, while the phenomenon can be analytically understood in the case of a constant all-to-all interaction, the enhanced superradiance persists under typical experimental parameters with spatially dependent interactions, but at modified critical interaction strengths. The diverging susceptibility at these critical points is captured by emergent quantum Rabi models, each of which comprises a pair of collective atomic states with different numbers of atomic excitations. These collective states become degenerate at the critical interaction strengths, resulting in a superradiant phase for an arbitrarily small atom-cavity coupling.
Related papers
- Collective coupling of driven multilevel atoms and its effect on four-wave mixing [0.0]
We present a systematic analysis of the cooperative effects arising in driven systems composed of multilevel atoms coupled via a common electromagnetic environment.
The dependence of single and two-photon correlations are studied in detail for each region by varying atomic orientations.
It is found that the anisotropy of the dipole-dipole interaction and its wave nature are essential to understand the behavior of the photons correlations.
arXiv Detail & Related papers (2024-04-04T17:36:24Z) - Realization of an extremely anisotropic Heisenberg magnet in Rydberg
atom arrays [4.209816265441194]
We employ a Rydberg quantum simulator to experimentally demonstrate strongly correlated spin transport in anisotropic Heisenberg magnets.
In our approach, the motion of magnons is controlled by an induced spin-exchange interaction through Rydberg dressing.
As the most prominent signature of a giant anisotropy, we show that nearby Rydberg excitations form distinct types of magnon bound states.
arXiv Detail & Related papers (2023-07-10T04:52:52Z) - Quantum Phases from Competing Van der Waals and Dipole-Dipole
Interactions of Rydberg Atoms [0.0]
Competing short- and long-range interactions represent distinguished ingredients for the formation of complex quantum many-body phases.
We leverage the van der Waals and dipole-dipole interactions of the Rydberg atoms to obtain the zero-temperature phase diagram for a uniform chain and a dimer model.
This demonstrates the versatility of the Rydberg platform in studying physics involving short- and long-ranged interactions simultaneously.
arXiv Detail & Related papers (2023-03-30T15:45:06Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Many-body radiative decay in strongly interacting Rydberg ensembles [0.0]
When atoms are excited to high-lying Rydberg states they interact strongly with dipolar forces.
We show that these interactions have also a significant impact on dissipative effects caused by the inevitable coupling of Rydberg atoms to the surrounding electromagnetic field.
We discuss how this collective dissipation - stemming from a mechanism different from the much studied super- and sub-radiance - accelerates decoherence and affects dissipative phase transitions in Rydberg ensembles.
arXiv Detail & Related papers (2022-06-06T18:30:52Z) - Size-Reduction of Rydberg collective excited states in cold atomic
system [1.2722697496405464]
When a collective excited state of a group of atoms during Rabi oscillation is varying, the oscillation exhibits rich dynamics.
Here, we experimentally observe a size-reduction effect of the Rydberg collective state during Rabi oscillation in cold atomic dilute gases.
Results show the potential prospects of studying the dynamics of the collective effect of a large amount of atoms and manipulating a single-photon wave-packet based on the interaction between light and Rydberg atoms.
arXiv Detail & Related papers (2022-05-18T01:33:09Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.