Policy Distillation with Selective Input Gradient Regularization for
Efficient Interpretability
- URL: http://arxiv.org/abs/2205.08685v1
- Date: Wed, 18 May 2022 01:47:16 GMT
- Title: Policy Distillation with Selective Input Gradient Regularization for
Efficient Interpretability
- Authors: Jinwei Xing, Takashi Nagata, Xinyun Zou, Emre Neftci, Jeffrey L.
Krichmar
- Abstract summary: Saliency maps are frequently used to provide interpretability for deep neural networks.
Existing saliency map approaches are either computationally expensive and cannot satisfy the real-time requirement of real-world scenarios.
We propose an approach of Distillation with selective Input Gradient Regularization (DIGR) which uses policy distillation and input gradient regularization to produce new policies.
- Score: 6.037276428689637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although deep Reinforcement Learning (RL) has proven successful in a wide
range of tasks, one challenge it faces is interpretability when applied to
real-world problems. Saliency maps are frequently used to provide
interpretability for deep neural networks. However, in the RL domain, existing
saliency map approaches are either computationally expensive and thus cannot
satisfy the real-time requirement of real-world scenarios or cannot produce
interpretable saliency maps for RL policies. In this work, we propose an
approach of Distillation with selective Input Gradient Regularization (DIGR)
which uses policy distillation and input gradient regularization to produce new
policies that achieve both high interpretability and computation efficiency in
generating saliency maps. Our approach is also found to improve the robustness
of RL policies to multiple adversarial attacks. We conduct experiments on three
tasks, MiniGrid (Fetch Object), Atari (Breakout) and CARLA Autonomous Driving,
to demonstrate the importance and effectiveness of our approach.
Related papers
- CDSA: Conservative Denoising Score-based Algorithm for Offline Reinforcement Learning [25.071018803326254]
Distribution shift is a major obstacle in offline reinforcement learning.
Previous conservative offline RL algorithms struggle to generalize to unseen actions.
We propose to use the gradient fields of the dataset density generated from a pre-trained offline RL algorithm to adjust the original actions.
arXiv Detail & Related papers (2024-06-11T17:59:29Z) - Learning Multimodal Behaviors from Scratch with Diffusion Policy Gradient [26.675822002049372]
Deep Diffusion Policy Gradient (DDiffPG) is a novel actor-critic algorithm that learns from scratch multimodal policies.
DDiffPG forms a multimodal training batch and utilizes mode-specific Q-learning to mitigate the inherent greediness of the RL objective.
Our approach further allows the policy to be conditioned on mode-specific embeddings to explicitly control the learned modes.
arXiv Detail & Related papers (2024-06-02T09:32:28Z) - Distilling Reinforcement Learning Policies for Interpretable Robot Locomotion: Gradient Boosting Machines and Symbolic Regression [53.33734159983431]
This paper introduces a novel approach to distill neural RL policies into more interpretable forms.
We train expert neural network policies using RL and distill them into (i) GBMs, (ii) EBMs, and (iii) symbolic policies.
arXiv Detail & Related papers (2024-03-21T11:54:45Z) - Discovering Behavioral Modes in Deep Reinforcement Learning Policies
Using Trajectory Clustering in Latent Space [0.0]
We introduce a new approach for investigating the behavior modes of DRL policies.
Specifically, we use Pairwise Controlled Manifold Approximation Projection (PaCMAP) for dimensionality reduction and TRACLUS for trajectory clustering.
Our methodology helps identify diverse behavior patterns and suboptimal choices by the policy, thus allowing for targeted improvements.
arXiv Detail & Related papers (2024-02-20T11:50:50Z) - Efficient Deep Reinforcement Learning Requires Regulating Overfitting [91.88004732618381]
We show that high temporal-difference (TD) error on the validation set of transitions is the main culprit that severely affects the performance of deep RL algorithms.
We show that a simple online model selection method that targets the validation TD error is effective across state-based DMC and Gym tasks.
arXiv Detail & Related papers (2023-04-20T17:11:05Z) - Offline Policy Optimization in RL with Variance Regularizaton [142.87345258222942]
We propose variance regularization for offline RL algorithms, using stationary distribution corrections.
We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer.
The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms.
arXiv Detail & Related papers (2022-12-29T18:25:01Z) - Policy Gradient for Reinforcement Learning with General Utilities [50.65940899590487]
In Reinforcement Learning (RL), the goal of agents is to discover an optimal policy that maximizes the expected cumulative rewards.
Many supervised and unsupervised RL problems are not covered in the Linear RL framework.
We derive the policy gradient theorem for RL with general utilities.
arXiv Detail & Related papers (2022-10-03T14:57:46Z) - Deep Reinforcement Learning with Robust and Smooth Policy [90.78795857181727]
We propose to learn a smooth policy that behaves smoothly with respect to states.
We develop a new framework -- textbfSmooth textbfRegularized textbfReinforcement textbfLearning ($textbfSR2textbfL$), where the policy is trained with smoothness-inducing regularization.
Such regularization effectively constrains the search space, and enforces smoothness in the learned policy.
arXiv Detail & Related papers (2020-03-21T00:10:29Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.