Deep Reinforcement Learning Based on Location-Aware Imitation
Environment for RIS-Aided mmWave MIMO Systems
- URL: http://arxiv.org/abs/2205.08788v1
- Date: Wed, 18 May 2022 08:25:36 GMT
- Title: Deep Reinforcement Learning Based on Location-Aware Imitation
Environment for RIS-Aided mmWave MIMO Systems
- Authors: Wangyang Xu, Jiancheng An, Chongwen Huang, Lu Gan, and Chau Yuen
- Abstract summary: This letter offers a novel deep reinforcement learning (DRL) algorithm based on a location-aware imitation environment for the joint beamforming design.
Specifically, we design a neural network to imitate the transmission environment based on the geometric relationship between the user's location and the mmWave channel.
- Score: 17.713210541836155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconfigurable intelligent surface (RIS) has recently gained popularity as a
promising solution for improving the signal transmission quality of wireless
communications with less hardware cost and energy consumption. This letter
offers a novel deep reinforcement learning (DRL) algorithm based on a
location-aware imitation environment for the joint beamforming design in an
RIS-aided mmWave multiple-input multiple-output system. Specifically, we design
a neural network to imitate the transmission environment based on the geometric
relationship between the user's location and the mmWave channel. Following
this, a novel DRL-based method is developed that interacts with the imitation
environment using the easily available location information. Finally,
simulation results demonstrate that the proposed DRL-based algorithm provides
more robust performance without excessive interaction overhead compared to the
existing DRL-based approaches.
Related papers
- Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Phase Shift Design in RIS Empowered Wireless Networks: From Optimization
to AI-Based Methods [83.98961686408171]
Reconfigurable intelligent surfaces (RISs) have a revolutionary capability to customize the radio propagation environment for wireless networks.
To fully exploit the advantages of RISs in wireless systems, the phases of the reflecting elements must be jointly designed with conventional communication resources.
This paper provides a review of current optimization methods and artificial intelligence-based methods for handling the constraints imposed by RIS.
arXiv Detail & Related papers (2022-04-28T09:26:14Z) - Differentially Private Federated Learning via Reconfigurable Intelligent
Surface [27.004823731436765]
Federated learning (FL) enables the collaborative training of a global model over decentralized local datasets without sharing them.
We propose a reconfigurable intelligent surface (RIS) empowered over-the-air FL system to alleviate the dilemma between learning accuracy and privacy.
arXiv Detail & Related papers (2022-03-31T13:45:02Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Multi-hop RIS-Empowered Terahertz Communications: A DRL-based Hybrid
Beamforming Design [39.21220050099642]
Wireless communication in the TeraHertz band (0.1--10 THz) is envisioned as one of the key enabling technologies for the future sixth generation (6G) wireless communication systems.
We propose a novel hybrid beamforming scheme for the multi-hop RIS-assisted communication networks to improve the coverage range at THz-band frequencies.
arXiv Detail & Related papers (2021-01-22T14:56:28Z) - Distributional Reinforcement Learning for mmWave Communications with
Intelligent Reflectors on a UAV [119.97450366894718]
A novel communication framework that uses an unmanned aerial vehicle (UAV)-carried intelligent reflector (IR) is proposed.
In order to maximize the downlink sum-rate, the optimal precoding matrix (at the base station) and reflection coefficient (at the IR) are jointly derived.
arXiv Detail & Related papers (2020-11-03T16:50:37Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z) - Millimeter Wave Communications with an Intelligent Reflector:
Performance Optimization and Distributional Reinforcement Learning [119.97450366894718]
A novel framework is proposed to optimize the downlink multi-user communication of a millimeter wave base station.
A channel estimation approach is developed to measure the channel state information (CSI) in real-time.
A distributional reinforcement learning (DRL) approach is proposed to learn the optimal IR reflection and maximize the expectation of downlink capacity.
arXiv Detail & Related papers (2020-02-24T22:18:54Z) - Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems
Exploiting Deep Reinforcement Learning [21.770491711632832]
The reconfigurable intelligent surface (RIS) has been speculated as one of the key enabling technologies for the future six generation (6G) wireless communication systems.
In this paper, we investigate the joint design of transmit beamforming matrix at the base station and the phase shift matrix at the RIS, by leveraging recent advances in deep reinforcement learning (DRL)
The proposed algorithm is not only able to learn from the environment and gradually improve its behavior, but also obtains the comparable performance compared with two state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-02-24T04:28:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.