DNN-Based Precoding in RIS-Aided mmWave MIMO Systems With Practical Phase Shift
- URL: http://arxiv.org/abs/2507.02824v2
- Date: Fri, 04 Jul 2025 03:10:52 GMT
- Title: DNN-Based Precoding in RIS-Aided mmWave MIMO Systems With Practical Phase Shift
- Authors: Po-Heng Chou, Ching-Wen Chen, Wan-Jen Huang, Walid Saad, Yu Tsao, Ronald Y. Chang,
- Abstract summary: This paper investigates maximizing the throughput of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with obstructed direct communication paths.<n>A reconfigurable intelligent surface (RIS) is employed to enhance transmissions, considering mmWave characteristics related to line-of-sight (LoS) and multipath effects.<n>Deep neural network (DNN) is developed to facilitate faster codeword selection.
- Score: 56.04579258267126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, the precoding design is investigated for maximizing the throughput of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with obstructed direct communication paths. In particular, a reconfigurable intelligent surface (RIS) is employed to enhance MIMO transmissions, considering mmWave characteristics related to line-of-sight (LoS) and multipath effects. The traditional exhaustive search (ES) for optimal codewords in the continuous phase shift is computationally intensive and time-consuming. To reduce computational complexity, permuted discrete Fourier transform (DFT) vectors are used for finding codebook design, incorporating amplitude responses for practical or ideal RIS systems. However, even if the discrete phase shift is adopted in the ES, it results in significant computation and is time-consuming. Instead, the trained deep neural network (DNN) is developed to facilitate faster codeword selection. Simulation results show that the DNN maintains sub-optimal spectral efficiency even as the distance between the end-user and the RIS has variations in the testing phase. These results highlight the potential of DNN in advancing RIS-aided systems.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.<n> embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.<n> split computing - where an SNN is partitioned across two devices - is a promising solution.<n>This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - B-LSTM-MIONet: Bayesian LSTM-based Neural Operators for Learning the
Response of Complex Dynamical Systems to Length-Variant Multiple Input
Functions [6.75867828529733]
Multiple-input deep neural operators (MIONet) extended DeepONet to allow multiple input functions in different Banach spaces.
MIONet offers flexibility in training dataset grid spacing, without constraints on output location.
This work redesigns MIONet, integrating Long Short Term Memory (LSTM) to learn neural operators from time-dependent data.
arXiv Detail & Related papers (2023-11-28T04:58:17Z) - Message Passing Meets Graph Neural Networks: A New Paradigm for Massive
MIMO Systems [31.86957709846756]
We propose a model-driven deep learning framework, namely the AMP-GNN for massive multiple input multiple output (MIMO) transceiver design.
Specifically, the structure of the AMP-GNN network is customized by unfolding the approximate message passing (AMP) algorithm and introducing a graph neural network (GNN) module into it.
arXiv Detail & Related papers (2023-02-14T08:30:04Z) - A Robust Deep Learning-Based Beamforming Design for RIS-assisted
Multiuser MISO Communications with Practical Constraints [4.727307803726522]
We consider a RIS-aided multiuser multiple-input single-output downlink communication system.
We develop a deep quantization neural network (DQNN) to simultaneously design the active and passive beamforming.
We extend the two proposed DQNN-based algorithms to the case that the discrete phase shifts and imperfect CSI are considered simultaneously.
arXiv Detail & Related papers (2021-11-12T03:53:20Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
We propose an end-to-end deep learning-based joint transceiver design algorithm for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems.
We develop a DNN architecture that maps the received pilots into feedback bits at the receiver, and then further maps the feedback bits into the hybrid precoder at the transmitter.
arXiv Detail & Related papers (2021-10-22T20:49:02Z) - ConCrete MAP: Learning a Probabilistic Relaxation of Discrete Variables
for Soft Estimation with Low Complexity [9.62543698736491]
ConCrete MAP Detection (CMD) is an iterative detection algorithm for large inverse linear problems.
We show CMD to feature a promising performance complexity trade-off compared to SotA.
Notably, we demonstrate CMD's soft outputs to be reliable for decoders.
arXiv Detail & Related papers (2021-02-25T09:54:25Z) - Joint Deep Reinforcement Learning and Unfolding: Beam Selection and
Precoding for mmWave Multiuser MIMO with Lens Arrays [54.43962058166702]
millimeter wave (mmWave) multiuser multiple-input multiple-output (MU-MIMO) systems with discrete lens arrays have received great attention.
In this work, we investigate the joint design of a beam precoding matrix for mmWave MU-MIMO systems with DLA.
arXiv Detail & Related papers (2021-01-05T03:55:04Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
We propose a pure spiking neural network (SNN) based computational model for precise sound localization in the noisy real-world environment.
We implement this algorithm in a real-time robotic system with a microphone array.
The experiment results show a mean error azimuth of 13 degrees, which surpasses the accuracy of the other biologically plausible neuromorphic approach for sound source localization.
arXiv Detail & Related papers (2020-07-07T08:22:56Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems
Exploiting Deep Reinforcement Learning [21.770491711632832]
The reconfigurable intelligent surface (RIS) has been speculated as one of the key enabling technologies for the future six generation (6G) wireless communication systems.
In this paper, we investigate the joint design of transmit beamforming matrix at the base station and the phase shift matrix at the RIS, by leveraging recent advances in deep reinforcement learning (DRL)
The proposed algorithm is not only able to learn from the environment and gradually improve its behavior, but also obtains the comparable performance compared with two state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-02-24T04:28:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.