論文の概要: On-device modeling of user's social context and familiar places from
smartphone-embedded sensor data
- arxiv url: http://arxiv.org/abs/2205.08790v3
- Date: Tue, 18 Jul 2023 09:00:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-19 19:56:31.819106
- Title: On-device modeling of user's social context and familiar places from
smartphone-embedded sensor data
- Title(参考訳): スマートフォン内蔵センサデータを用いたユーザの社会的状況と身近な場所のオンデバイスモデリング
- Authors: Mattia Giovanni Campana, Franca Delmastro
- Abstract要約: ユーザの社会的文脈とその位置をモデル化するための,新しい,教師なし,軽量なアプローチを提案する。
ユーザとそのデバイス間の物理的およびサイバー的ソーシャルインタラクションに関連するデータを活用する。
日常の状況を認識するための3つの機械学習アルゴリズムの性能を示す。
- 参考スコア(独自算出の注目度): 7.310043452300736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Context modeling and recognition represent complex tasks that allow mobile
and ubiquitous computing applications to adapt to the user's situation. Current
solutions mainly focus on limited context information generally processed on
centralized architectures, potentially exposing users' personal data to privacy
leakage, and missing personalization features. For these reasons on-device
context modeling and recognition represent the current research trend in this
area. Among the different information characterizing the user's context in
mobile environments, social interactions and visited locations remarkably
contribute to the characterization of daily life scenarios. In this paper we
propose a novel, unsupervised and lightweight approach to model the user's
social context and her locations based on ego networks directly on the user
mobile device. Relying on this model, the system is able to extract high-level
and semantic-rich context features from smartphone-embedded sensors data.
Specifically, for the social context it exploits data related to both physical
and cyber social interactions among users and their devices. As far as location
context is concerned, we assume that it is more relevant to model the
familiarity degree of a specific location for the user's context than the raw
location data, both in terms of GPS coordinates and proximity devices. By using
5 real-world datasets, we assess the structure of the social and location ego
networks, we provide a semantic evaluation of the proposed models and a
complexity evaluation in terms of mobile computing performance. Finally, we
demonstrate the relevance of the extracted features by showing the performance
of 3 machine learning algorithms to recognize daily-life situations, obtaining
an improvement of 3% of AUROC, 9% of Precision, and 5% in terms of Recall with
respect to use only features related to physical context.
- Abstract(参考訳): コンテキストモデリングと認識は、モバイルおよびユビキタスコンピューティングアプリケーションがユーザの状況に適応できるようにする複雑なタスクを表す。
現在のソリューションは主に、集中型アーキテクチャで一般的に処理される限られたコンテキスト情報に重点を置いており、ユーザの個人情報をプライバシリークに暴露する可能性があり、パーソナライズ機能が欠落している。
これらの理由から、オンデバイスコンテキストモデリングと認識は、この分野における現在の研究トレンドを表している。
モバイル環境におけるユーザのコンテキストを特徴付ける異なる情報のうち、社会的相互作用や訪問場所は日常生活シナリオの特徴づけに大いに寄与している。
本稿では,モバイル端末上で直接egoネットワークに基づいて,ユーザの社会的コンテキストと位置情報をモデル化する新しい,教師なし,かつ軽量なアプローチを提案する。
このモデルに基づいて、スマートフォン内蔵センサーデータから高レベルで意味に富んだコンテキスト特徴を抽出することができる。
具体的には、ユーザーとデバイス間の物理的およびサイバー的社会的相互作用に関するデータを利用する。
位置情報のコンテキストに関しては,GPS座標と近接装置の両方の観点から,ユーザのコンテキストに対する特定の位置情報の親しみ度を生の位置情報データよりもモデル化することが重要と考えられる。
実世界の5つのデータセットを用いて,社会的および位置的エゴネットワークの構造を評価し,提案したモデルのセマンティックな評価と,モバイルコンピューティングの性能の観点からの複雑性評価を提供する。
最後に,3つの機械学習アルゴリズムによる日常的状況認識の性能を示すことで,抽出された特徴の関連性を実証し,aurocの3%,精度9%,再現率5%の改善を得た。
関連論文リスト
- Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
本稿では, 位置決めの精度を高めるために, 視点選択の重要性を強調し, アクティブな位置決め領域について検討する。
私たちのコントリビューションは、リアルタイム操作用に設計されたシンプルなアーキテクチャ、自己教師付きデータトレーニング方法、および実世界のロボティクスアプリケーションに適した計画フレームワークにマップを一貫して統合する能力による、データ駆動型アプローチの使用に関するものです。
論文 参考訳(メタデータ) (2024-07-22T12:32:09Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Lightweight Modeling of User Context Combining Physical and Virtual
Sensor Data [15.800978541993706]
本研究では,パーソナルモバイルデバイスから異質なセンサデータを含むデータセットを収集するフレームワークを提案する。
本稿では,ユーザコンテキストをモデル化し,推論プロセス全体を効率的に実行するための軽量なアプローチを提案する。
精度の低下を3%以下に抑えつつ、10倍のスピードアップと90%以上の機能低下を実現した。
論文 参考訳(メタデータ) (2023-06-28T08:57:01Z) - MyDigitalFootprint: an extensive context dataset for pervasive computing
applications at the edge [7.310043452300736]
MyDigitalFootprintは、スマートフォンセンサーデータ、物理的な近接情報、オンラインソーシャルネットワークのインタラクションを含む大規模なデータセットである。
自然環境における31人のボランティアユーザーによる2ヶ月の計測で、制限なしの行動を可能にする。
データセットの有効性を示すために,各種機械学習タスクを利用したコンテキスト認識3つのアプリケーションを提案する。
論文 参考訳(メタデータ) (2023-06-28T07:59:47Z) - On-device modeling of user's social context and familiar places from
smartphone-embedded sensor data [7.310043452300736]
本稿では,ユーザの社会的状況や位置を直接モバイルデバイス上でモデル化する,教師なしで軽量なアプローチを提案する。
ソーシャルなコンテキストにおいて、このアプローチはユーザーとそのデバイス間の物理的およびサイバーなソーシャルインタラクションのデータを利用する。
提案手法の有効性は,実世界の5つのデータセットを用いた3つの実験によって実証された。
論文 参考訳(メタデータ) (2023-06-27T12:53:14Z) - Video-based Pose-Estimation Data as Source for Transfer Learning in
Human Activity Recognition [71.91734471596433]
オンボディデバイスを用いたヒューマンアクティビティ認識(HAR)は、制約のない環境での特定の人間の行動を特定する。
これまでの研究は、トランスファーラーニングが、少ないデータでシナリオに対処するための良い戦略であることを実証した。
本稿では,人為的位置推定を目的としたデータセットを伝達学習の情報源として用いることを提案する。
論文 参考訳(メタデータ) (2022-12-02T18:19:36Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
骨格に基づく行動認識のための適応的局所成分認識グラフ畳み込みネットワークを提案する。
我々の手法はグローバルな埋め込みよりも強力な表現を提供し、我々のモデルが最先端に到達するのに役立ちます。
論文 参考訳(メタデータ) (2022-09-21T02:33:07Z) - SensiX: A Platform for Collaborative Machine Learning on the Edge [69.1412199244903]
センサデータとセンサモデルの間に留まるパーソナルエッジプラットフォームであるSensiXを紹介する。
動作および音声に基づくマルチデバイスセンシングシステムの開発において,その有効性を示す。
評価の結果,SensiXは3mWのオーバヘッドを犠牲にして,全体の精度が7~13%向上し,環境のダイナミクスが最大30%向上することがわかった。
論文 参考訳(メタデータ) (2020-12-04T23:06:56Z) - Multi-Modal Subjective Context Modelling and Recognition [19.80579219657159]
我々は,時間,場所,活動,社会的関係,対象の5次元を捉える新しい存在論的文脈モデルを提案する。
実世界のデータに対する最初の文脈認識実験は、我々のモデルの約束を示唆している。
論文 参考訳(メタデータ) (2020-11-19T05:42:03Z) - Grounded Situation Recognition [56.18102368133022]
画像の構造的要約を生成することを必要とする課題であるグラウンドドコンディション認識(GSR)を導入する。
GSRはセマンティック・サリエンシの識別、大規模で多様なエンティティの分類とローカライズという重要な技術的課題を提示している。
我々は,条件付きクエリ,視覚連鎖,接地型セマンティック・アウェアネス・イメージ検索の3つのモデルによって実現される3つの将来方向について,最初の知見を示す。
論文 参考訳(メタデータ) (2020-03-26T17:57:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。