Coherence properties of electron beam activated emitters in hexagonal
boron nitride under resonant excitation
- URL: http://arxiv.org/abs/2205.08810v1
- Date: Wed, 18 May 2022 09:19:59 GMT
- Title: Coherence properties of electron beam activated emitters in hexagonal
boron nitride under resonant excitation
- Authors: Jake Horder, Simon White, Angus Gale, Chi Li, Kenji Watanabe, Takashi
Taniguchi, Mehran Kianinia, Igor Aharonovich, Milos Toth
- Abstract summary: Quantum emitters in 2D materials can host two level systems that can act as qubits for quantum information processing.
Here, we characterize the behavior of position-controlled quantum emitters in hexagonal boron nitride at cryogenic temperatures.
- Score: 2.6615104793861537
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Two dimensional materials are becoming increasingly popular as a platform for
studies of quantum phenomena and for the production of prototype quantum
technologies. Quantum emitters in 2D materials can host two level systems that
can act as qubits for quantum information processing. Here, we characterize the
behavior of position-controlled quantum emitters in hexagonal boron nitride at
cryogenic temperatures. Over two dozen sites, we observe an ultra-narrow
distribution of the zero phonon line at ~436 nm, together with strong linearly
polarized emission. We employ resonant excitation to characterize the emission
lineshape and find spectral diffusion and phonon broadening contribute to
linewidths in the range 1-2 GHz. Rabi oscillations are observed at a range of
resonant excitation powers, and under 1 ${\mu}$W excitation a coherent
superposition is maintained up to 0.90 ns. Our results are promising for future
employment of quantum emitters in hBN for scalable quantum technologies.
Related papers
- Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Dynamics and Resonance Fluorescence from a Superconducting Artificial Atom Doubly Driven by Quantized and Classical Fields [11.961708412157757]
Experimental demonstration of resonance fluorescence in a two-level superconducting artificial atom under two driving fields coupled to a detuned cavity.
The device consists of a transmon qubit strongly coupled to a one-dimensional transmission line and a coplanar waveguide resonator.
arXiv Detail & Related papers (2024-03-17T08:48:30Z) - Electrically defined quantum dots for bosonic excitons [0.0]
We show electrically-defined quantum dots for excitons in monolayer semiconductors.
Our work paves the way for realizing quantum confined bosonic modes where nonlinear response would arise exclusively from exciton--exciton interactions.
arXiv Detail & Related papers (2024-02-29T15:45:22Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Electrical Control of Quantum Emitters in a Van der Waals
Heterostructure [2.239998253134085]
We show an approach to electrically modulate quantum emitters in n hBN graphene van der Waals heterostructure.
Notably, a significant number of quantum emitters are intrinsically dark, and become optically active at non-zero voltages.
Our results enhance the potential of hBN for tuneable solid state quantum emitters for the growing field of quantum information science.
arXiv Detail & Related papers (2021-11-04T11:03:53Z) - 0D-2D Heterostructure for making very Large Quantum Registers using
itinerant Bose-Einstein Condensate of Excitons [0.08399688944263842]
Presence of coherent resonant tunneling in quantum dot (zero-dimensional) - quantum well (two-dimensional) heterostructure is necessary to explain electrical polarization of excitonic dipoles over a macroscopically large area.
Observations point to experimental control of macroscopically large, quantum state of a two-component Bose-Einstein condensate of excitons in this quantum dot - quantum well heterostructure.
arXiv Detail & Related papers (2021-07-28T17:42:12Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.