Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN
- URL: http://arxiv.org/abs/2006.13048v1
- Date: Tue, 23 Jun 2020 14:20:46 GMT
- Title: Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN
- Authors: Stefan H\"au{\ss}ler, Gregor Bayer, Richard Waltrich, Noah Mendelson,
Chi Li, David Hunger, Igor Aharonovich and Alexander Kubanek
- Abstract summary: In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
- Score: 52.915502553459724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Realization of quantum photonic devices requires coupling single quantum
emitters to the mode of optical resonators. In this work we present a hybrid
system consisting of defect centers in few-layer hBN grown by chemical vapor
deposition and a fiber-based Fabry-Perot cavity. The sub 10 nm thickness of hBN
and its smooth surface enables efficient integration into the cavity mode. We
operate our hybrid platform over a broad spectral range larger than 30 nm and
use its tuneability to explore different coupling regimes. Consequently, we
achieve very large cavity-assisted signal enhancement up to 50-fold and equally
strong linewidth narrowing owing to cavity funneling, both records for
hBN-cavity systems. Additionally, we implement an excitation and readout scheme
for resonant excitation that allows us to establish cavity-assisted PLE
spectroscopy. Our work marks an important milestone for the deployment of 2D
materials coupled to fiber-based cavities in practical quantum technologies.
Related papers
- Scalable construction of hybrid quantum photonic cavities [0.0]
We introduce a concept that generates a finely tunable PhC cavity at a select wavelength between two heterogeneous optical materials.
The cavity is formed by stamping a hard-to-process material with simple waveguide geometries on top of an easy-to-process material.
We simulate our concept for the particularly challenging design problem of multiplexed quantum repeaters based on arrays of cavity-coupled diamond color centers.
arXiv Detail & Related papers (2024-10-04T18:36:39Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Room Temperature Fiber-Coupled single-photon devices based on Colloidal
Quantum Dots and SiV centers in Back Excited Nanoantennas [91.6474995587871]
Directionality is achieved with a hybrid metal-dielectric bullseye antenna.
Back-excitation is permitted by placement of the emitter at or in a sub-wavelength hole positioned at the bullseye center.
arXiv Detail & Related papers (2023-03-19T14:54:56Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Surface Acoustic Wave Cavity Optomechanics with WSe$_2$ Single Photon
Emitters [0.0]
Surface acoustic waves (SAWs) are a versatile tool for coherently interfacing with a variety of solid-state quantum systems.
Here, we demonstrate SAW cavity optomechanics with quantum emitters in 2D materials.
We leverage the large anisotropic strain from the SAW to modulate the excitonic fine-structure splitting on a nanosecond timescale.
arXiv Detail & Related papers (2022-11-28T22:36:52Z) - Large Single-Phonon Optomechanical Coupling between Quantum Dots and
Tightly Confined Surface Acoustic Waves in the Quantum Regime [1.7039969990048311]
Small acoustic cavities with large zero-point motion are required for high efficiencies.
We experimentally establish the feasibility of this platform through electro- and opto-mechanical characterization.
We show conversion between microwave phonons and optical photons with sub-natural linewidths.
arXiv Detail & Related papers (2022-05-03T02:53:01Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Purcell enhanced and indistinguishable single-photon generation from
quantum dots coupled to on-chip integrated ring resonators [0.2642406403099596]
Integrated photonic circuits provide a versatile toolbox of functionalities for advanced quantum optics applications.
We develop GaAs monolithic ring cavities based on distributed Bragg reflector ridge waveguides.
We demonstrate an on-demand single-photon generation with strongly suppressed multi-photon emission probability as low as 1% and two-photon interference with visibility up to 95%.
arXiv Detail & Related papers (2020-07-25T12:43:53Z) - The NV centre coupled to an ultra-small mode volume cavity: a high
efficiency source of indistinguishable photons at 200 K [0.15749416770494706]
atom-like systems burdened by phonon sidebands and broadening due to surface charges.
We design a silicon nitride cavity that allows 99 % efficient extraction of photons at 200 K.
Our work points towards scalable fabrication of non-cryogenic atom-like efficient sources of indistinguishable photons.
arXiv Detail & Related papers (2020-05-27T16:36:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.