論文の概要: A False Sense of Security? Revisiting the State of Machine
Learning-Based Industrial Intrusion Detection
- arxiv url: http://arxiv.org/abs/2205.09199v1
- Date: Wed, 18 May 2022 20:17:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-20 14:37:20.833935
- Title: A False Sense of Security? Revisiting the State of Machine
Learning-Based Industrial Intrusion Detection
- Title(参考訳): セキュリティの誤った感覚?
機械学習による産業侵入検知の現状と課題
- Authors: Dominik Kus, Eric Wagner, Jan Pennekamp, Konrad Wolsing, Ina Berenice
Fink, Markus Dahlmanns, Klaus Wehrle, Martin Henze
- Abstract要約: 異常に基づく侵入検知は、産業制御システムに対する新規または未知の攻撃を検出することを約束する。
研究は機械学習による自動学習に重点を置いており、検出率は99%以上に達する。
その結果、未知の攻撃を検出できないことが強調され、検出率は3.2%から14.7%に低下した。
- 参考スコア(独自算出の注目度): 9.924435476552702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly-based intrusion detection promises to detect novel or unknown attacks
on industrial control systems by modeling expected system behavior and raising
corresponding alarms for any deviations.As manually creating these behavioral
models is tedious and error-prone, research focuses on machine learning to
train them automatically, achieving detection rates upwards of 99%. However,
these approaches are typically trained not only on benign traffic but also on
attacks and then evaluated against the same type of attack used for training.
Hence, their actual, real-world performance on unknown (not trained on) attacks
remains unclear. In turn, the reported near-perfect detection rates of machine
learning-based intrusion detection might create a false sense of security. To
assess this situation and clarify the real potential of machine learning-based
industrial intrusion detection, we develop an evaluation methodology and
examine multiple approaches from literature for their performance on unknown
attacks (excluded from training). Our results highlight an ineffectiveness in
detecting unknown attacks, with detection rates dropping to between 3.2% and
14.7% for some types of attacks. Moving forward, we derive recommendations for
further research on machine learning-based approaches to ensure clarity on
their ability to detect unknown attacks.
- Abstract(参考訳): anomaly-based intrusion detection(異常検知)は、期待されたシステムの動作をモデル化し、任意の逸脱に対して対応するアラームを発生させることで、産業用制御システムの新規または未知の攻撃を検出することを約束する。
しかしながら、これらのアプローチは通常、良心的なトラフィックだけでなく、攻撃についても訓練され、訓練に使用される同じタイプの攻撃に対して評価される。
したがって、未知の(訓練されていない)攻撃に対する実際の実世界のパフォーマンスはいまだに不明である。
逆に、機械学習に基づく侵入検出のほぼ完璧な検出率は、誤ったセキュリティ感覚を生み出す可能性がある。
この状況を評価し,機械学習による産業侵入検出の真の可能性を明らかにするため,未知の攻撃(訓練を除く)に対する文献からの複数のアプローチを検証し,評価手法を開発した。
その結果,未知の攻撃の検出効率が低下し,検出率は3.2%から14.7%に低下した。
今後は、未知の攻撃を検出する能力を明確にするために、機械学習ベースのアプローチに関するさらなる研究を推奨する。
関連論文リスト
- Unlearn and Burn: Adversarial Machine Unlearning Requests Destroy Model Accuracy [65.80757820884476]
未学習システムのデプロイにおいて、重要で未調査の脆弱性を公開しています。
本稿では,訓練セットに存在しないデータに対して,逆学習要求を送信することにより,攻撃者がモデル精度を劣化させることができる脅威モデルを提案する。
我々は、未学習要求の正当性を検出するための様々な検証メカニズムを評価し、検証の課題を明らかにする。
論文 参考訳(メタデータ) (2024-10-12T16:47:04Z) - Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
模倣攻撃は 不正な識別と その後の攻撃者の認証につながる
顔認識と同様に、模倣攻撃も機械学習で検出できる。
本稿では,未使用の機能と時間認識の深層学習戦略を組み合わせることで,高い分類精度を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-27T07:26:10Z) - Unsupervised Adversarial Detection without Extra Model: Training Loss
Should Change [24.76524262635603]
従来の敵の訓練と教師付き検出へのアプローチは、攻撃型の事前知識とラベル付きトレーニングデータへのアクセスに依存している。
そこで本稿では,敵攻撃の事前知識を必要とせずに,不要な特徴とそれに対応する検出方法を新たに提案する。
提案手法は全攻撃タイプで有効であり, 偽陽性率は特定の攻撃タイプに優れた手法よりさらに優れている。
論文 参考訳(メタデータ) (2023-08-07T01:41:21Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - Detect & Reject for Transferability of Black-box Adversarial Attacks
Against Network Intrusion Detection Systems [0.0]
本稿では,機械学習による侵入検知システムに対する敵ネットワークトラフィックの転送可能性について検討する。
本研究では,機械学習による侵入検知システムに対する対向的ネットワークトラフィックの転送可能性特性の影響を抑えるための防御機構として検出・削除を検討した。
論文 参考訳(メタデータ) (2021-12-22T17:54:54Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
本稿では,強化学習に基づく対話型レコメンデーションシステムにおける敵例の探索と攻撃検出を提案する。
まず、入力に摂動を加え、カジュアルな要因に介入することで、異なる種類の逆例を作成する。
そこで,本研究では,人工データに基づく深層学習に基づく分類器による潜在的攻撃を検出することにより,推薦システムを強化した。
論文 参考訳(メタデータ) (2021-12-02T04:12:24Z) - Attack Rules: An Adversarial Approach to Generate Attacks for Industrial
Control Systems using Machine Learning [7.205662414865643]
ルールマイニングに基づくアタック生成手法を提案する。
提案手法は、これまでは見られなかった新たな攻撃ベクトルの大部分を構成する30万以上の攻撃パターンを生成することができた。
論文 参考訳(メタデータ) (2021-07-11T20:20:07Z) - Adversarial Attacks and Mitigation for Anomaly Detectors of
Cyber-Physical Systems [6.417955560857806]
本研究では,CPSの異常検出器とルールチェッカーを同時に回避する対向攻撃を提案する。
既存の勾配に基づくアプローチにインスパイアされた我々の敵攻撃は、センサーとアクチュエーターの値にノイズを発生させ、遺伝的アルゴリズムを使って後者を最適化する。
実世界の2つの重要なインフラテストベッドに対するアプローチを実装し、検出器の分類精度を平均50%以上下げることに成功した。
論文 参考訳(メタデータ) (2021-05-22T12:19:03Z) - Launching Adversarial Attacks against Network Intrusion Detection
Systems for IoT [5.077661193116692]
テクノロジーは、セキュリティが後発である利益主導のモノのインターネット市場にシフトしています。
従来の防御アプローチは、既知の攻撃と未知の攻撃の両方を高精度に検出するのに十分ではない。
機械学習による侵入検知システムは、未知の攻撃を高精度に特定することに成功した。
論文 参考訳(メタデータ) (2021-04-26T09:36:29Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
本稿では,システムの物理的特性に反する逆スプーフ信号を生成するための新しい枠組みを提案する。
トップセキュリティカンファレンスで公表された4つの異常検知器を分析した。
論文 参考訳(メタデータ) (2020-12-07T11:02:44Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。