論文の概要: Support-set based Multi-modal Representation Enhancement for Video
Captioning
- arxiv url: http://arxiv.org/abs/2205.09307v1
- Date: Thu, 19 May 2022 03:40:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-20 14:03:23.917028
- Title: Support-set based Multi-modal Representation Enhancement for Video
Captioning
- Title(参考訳): ビデオキャプションのためのサポートセットに基づくマルチモーダル表現強調
- Authors: Xiaoya Chen, Jingkuan Song, Pengpeng Zeng, Lianli Gao and Heng Tao
Shen
- Abstract要約: サンプル間で共有されるセマンティックサブ空間において、リッチな情報をマイニングするためのサポートセットベースのマルチモーダル表現拡張(SMRE)モデルを提案する。
具体的には、サンプル間の基礎となる関係を学習し、意味的関連視覚要素を得るためのサポートセットを構築するためのサポートセット構築(SC)モジュールを提案する。
本研究では,SST(Semantic Space Transformation)モジュールを設計し,相対距離を制約し,マルチモーダルインタラクションを自己管理的に管理する。
- 参考スコア(独自算出の注目度): 121.70886789958799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video captioning is a challenging task that necessitates a thorough
comprehension of visual scenes. Existing methods follow a typical one-to-one
mapping, which concentrates on a limited sample space while ignoring the
intrinsic semantic associations between samples, resulting in rigid and
uninformative expressions. To address this issue, we propose a novel and
flexible framework, namely Support-set based Multi-modal Representation
Enhancement (SMRE) model, to mine rich information in a semantic subspace
shared between samples. Specifically, we propose a Support-set Construction
(SC) module to construct a support-set to learn underlying connections between
samples and obtain semantic-related visual elements. During this process, we
design a Semantic Space Transformation (SST) module to constrain relative
distance and administrate multi-modal interactions in a self-supervised way.
Extensive experiments on MSVD and MSR-VTT datasets demonstrate that our SMRE
achieves state-of-the-art performance.
- Abstract(参考訳): ビデオキャプションは、視覚シーンの徹底的な理解を必要とする課題である。
既存の手法は、サンプル間の内在的な意味関係を無視しながら、限られたサンプル空間に集中する典型的な1対1のマッピングに従う。
この問題に対処するため,我々は,サンプル間で共有される意味的部分空間にリッチな情報をマイニングするサポートセットベースのマルチモーダル表現拡張(smre)モデルを提案する。
具体的には、サンプル間の基礎となる関係を学習し、意味的関連視覚要素を得るためのサポートセットを構築するためのサポートセット構築(SC)モジュールを提案する。
本研究では,SST(Semantic Space Transformation)モジュールを設計し,相対距離を制約し,マルチモーダルインタラクションを自己管理的に管理する。
MSVDとMSR-VTTデータセットの大規模な実験は、我々のSMREが最先端のパフォーマンスを達成することを示す。
関連論文リスト
- Cross-domain Multi-modal Few-shot Object Detection via Rich Text [21.36633828492347]
クロスモーダルな特徴抽出と統合は、数ショットの学習タスクで安定したパフォーマンス改善をもたらした。
MM-OD (CDMM-FSOD) のクロスドメイン数ショット一般化について検討し,メタラーニングに基づく多モード数ショット検出手法を提案する。
論文 参考訳(メタデータ) (2024-03-24T15:10:22Z) - Multi-modal Semantic Understanding with Contrastive Cross-modal Feature
Alignment [11.897888221717245]
マルチモーダルな特徴アライメントを実現するためのCLIP誘導型コントラスト学習型アーキテクチャを提案する。
我々のモデルはタスク固有の外部知識を使わずに実装が簡単であり、そのため、他のマルチモーダルタスクに容易に移行できる。
論文 参考訳(メタデータ) (2024-03-11T01:07:36Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
マルチモーダル出力を有効にした視覚理解のための新しいICLフレームワークを提案する。
まず、テキストと視覚的プロンプトの両方を量子化し、統一された表現空間に埋め込む。
次にデコーダのみのスパーストランスアーキテクチャを用いて生成モデリングを行う。
論文 参考訳(メタデータ) (2023-12-05T06:02:21Z) - Preserving Modality Structure Improves Multi-Modal Learning [64.10085674834252]
大規模マルチモーダルデータセットによる自己教師付き学習は、人間のアノテーションに頼ることなく、意味的に意味のある埋め込みを学ぶことができる。
これらの手法は、モダリティ固有の埋め込みに存在する意味構造を無視して、ドメイン外のデータをうまく一般化するのに苦労することが多い。
共同埋め込み空間におけるモダリティ特異的な関係を保ち, 一般化性を向上させるためのセマンティック・構造保存整合性アプローチを提案する。
論文 参考訳(メタデータ) (2023-08-24T20:46:48Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
マルチモーダルエンティティリンクタスクは、マルチモーダル知識グラフへの曖昧な言及を解決することを目的としている。
MELタスクを解決するための新しいMulti-Grained Multimodal InteraCtion Network $textbf(MIMIC)$ frameworkを提案する。
論文 参考訳(メタデータ) (2023-07-19T02:11:19Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
本稿では,ビデオオブジェクトのセグメンテーションを参照するためのSAMの可能性を探るRefSAMモデルを提案する。
提案手法は,Cross-RValModalを用いることで,モダリティ学習を向上させるためにオリジナルのSAMモデルに適応する。
我々は、言語と視覚の特徴を効果的に調整し、融合させるために、パラメータ効率のチューニング戦略を採用している。
論文 参考訳(メタデータ) (2023-07-03T13:21:58Z) - Few-shot Semantic Segmentation with Support-induced Graph Convolutional
Network [28.46908214462594]
Few-shot semantic segmentation (FSS) は、いくつかの注釈付きサンプルで新しいオブジェクトのセグメンテーションを実現することを目的としている。
本稿では,クエリ画像中の遅延コンテキスト構造を明示的に抽出するために,Support-induced Graph Convolutional Network (SiGCN)を提案する。
論文 参考訳(メタデータ) (2023-01-09T08:00:01Z) - Linguistic Structure Guided Context Modeling for Referring Image
Segmentation [61.701577239317785]
本稿では,マルチモーダルコンテキストを相互モーダル相互作用によりモデル化する「ガザ・プロパゲート・ディストリビュート」方式を提案する。
我々のLSCMモジュールは依存パーシングツリーワードグラフ(DPT-WG)を構築し、文の有効なマルチモーダルコンテキストを含むようにすべての単語を誘導する。
論文 参考訳(メタデータ) (2020-10-01T16:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。