論文の概要: BabyNet: Residual Transformer Module for Birth Weight Prediction on
Fetal Ultrasound Video
- arxiv url: http://arxiv.org/abs/2205.09382v1
- Date: Thu, 19 May 2022 08:27:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-21 04:49:51.182876
- Title: BabyNet: Residual Transformer Module for Birth Weight Prediction on
Fetal Ultrasound Video
- Title(参考訳): BabyNet:胎児超音波映像の出生体重予測用残差変圧器モジュール
- Authors: Szymon P{\l}otka, Micha{\l} K. Grzeszczyk, Robert
Brawura-Biskupski-Samaha, Pawe{\l} Gutaj, Micha{\l} Lipa, Tomasz Trzci\'nski,
Arkadiusz Sitek
- Abstract要約: 本稿では,Residual Transformer Moduleを提案する。Residual Transformer Moduleは2D+t時間超音波ビデオスキャンの解析のために3D ResNetベースのネットワークを拡張している。
BabyNetと呼ばれるエンドツーエンドの手法は、胎児の超音波ビデオスキャンに基づいて胎児の体重を自動的に予測する。
- 参考スコア(独自算出の注目度): 8.468600443532413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting fetal weight at birth is an important aspect of perinatal care,
particularly in the context of antenatal management, which includes the planned
timing and the mode of delivery. Accurate prediction of weight using prenatal
ultrasound is challenging as it requires images of specific fetal body parts
during advanced pregnancy which is difficult to capture due to poor quality of
images caused by the lack of amniotic fluid. As a consequence, predictions
which rely on standard methods often suffer from significant errors. In this
paper we propose the Residual Transformer Module which extends a 3D
ResNet-based network for analysis of 2D+t spatio-temporal ultrasound video
scans. Our end-to-end method, called BabyNet, automatically predicts fetal
birth weight based on fetal ultrasound video scans. We evaluate BabyNet using a
dedicated clinical set comprising 225 2D fetal ultrasound videos of pregnancies
from 75 patients performed one day prior to delivery. Experimental results show
that BabyNet outperforms several state-of-the-art methods and estimates the
weight at birth with accuracy comparable to human experts. Furthermore,
combining estimates provided by human experts with those computed by BabyNet
yields the best results, outperforming either of other methods by a significant
margin. The source code of BabyNet is available at
https://github.com/SanoScience/BabyNet.
- Abstract(参考訳): 出生時の胎児の体重を予測することは周産期ケアの重要な側面であり、特に妊娠管理の文脈では、計画されたタイミングと出産の様式を含む。
出生前超音波による正確な体重予測は、妊娠中の胎児の特定の部位の画像を必要とするため困難であり、羊水不足による画像の質の低下により撮影が困難である。
その結果、標準メソッドに依存する予測は、しばしば重大なエラーに悩まされる。
本稿では,2d+t時空間超音波映像解析のための3d resnetベースのネットワークを拡張した残差変圧器モジュールを提案する。
BabyNetと呼ばれるエンドツーエンドの手法は、胎児超音波ビデオスキャンに基づいて胎児の体重を自動的に予測する。
当科におけるBabyNetは,産後1日前に実施した75例の妊娠の225D胎児超音波ビデオを用いた専用臨床セットを用いて評価を行った。
実験の結果、babynetは最先端の手法よりも優れており、人間の専門家に匹敵する精度で出生時の体重を見積もっている。
さらに、人間の専門家が計算した推定値とバビネットが計算した推定値とを組み合わせると、最も良い結果が得られる。
BabyNetのソースコードはhttps://github.com/SanoScience/BabyNetで入手できる。
関連論文リスト
- Predicting Adverse Neonatal Outcomes for Preterm Neonates with
Multi-Task Learning [51.487856868285995]
われわれはまず, 3つの不良新生児結果の相関関係を解析し, マルチタスク学習(MTL)問題として複数の新生児結果の診断を定式化する。
特に、MTLフレームワークは、共有された隠れレイヤと複数のタスク固有のブランチを含んでいる。
論文 参考訳(メタデータ) (2023-03-28T00:44:06Z) - Localizing Scan Targets from Human Pose for Autonomous Lung Ultrasound
Imaging [61.60067283680348]
新型コロナウイルス(COVID-19)の世界的なパンデミックの出現に伴い、超音波画像を完全に自動化する必要がある。
本稿では,学習型コンピュータビジョン技術を取り入れた,視覚に基づくデータ駆動方式を提案する。
本手法は、プローブ位置決めのための15.52mm(9.47mm)、プローブ方位のための4.32(3.69deg)の精度を達成し、全走査目標に対する誤差閾値25mm以下で成功率を80%以上とした。
論文 参考訳(メタデータ) (2022-12-15T14:34:12Z) - Deep Learning Fetal Ultrasound Video Model Match Human Observers in
Biometric Measurements [8.468600443532413]
本研究では、胎児の身体部分の自動計測に深層畳み込みニューラルネットワーク(CNN)を用いる方法について検討する。
測定値の差は, サーバ間およびサーバ内変動の範囲内であった。
FUVAIは, 胎児の生体計測を臨床現場で行うソノグラフィーを支援する可能性を秘めている。
論文 参考訳(メタデータ) (2022-05-27T09:00:19Z) - Enabling faster and more reliable sonographic assessment of gestational
age through machine learning [1.3238745915345225]
胎児超音波は出生前治療の不可欠な部分であり、妊娠年齢(GA)を推定するために用いられる。
我々は,標準平面画像を用いた画像モデル,フライトビデオを用いたビデオモデル,アンサンブルモデル(画像とビデオの組み合わせ)の3つのAIモデルを開発した。
これら3種は, 専門ソノグラフィーによる標準胎児バイオメトリに基づくGA推定よりも統計的に優れていた。
論文 参考訳(メタデータ) (2022-03-22T17:15:56Z) - FetalNet: Multi-task deep learning framework for fetal ultrasound
biometric measurements [11.364211664829567]
本稿では,FetalNetと呼ばれるマルチタスク・ニューラルネットワークについて,胎児超音波スキャン画像解析のためのアテンション機構とスタックモジュールを提案する。
胎児超音波画像解析の主な目的は、胎児の頭部、腹部、大腿骨を測定するための適切な基準面を見つけることである。
FetalNetという手法は,胎児超音波ビデオ記録における分類とセグメント化の両面で,既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2021-07-14T19:13:33Z) - AutoFB: Automating Fetal Biometry Estimation from Standard Ultrasound
Planes [10.745788530692305]
提案したフレームワークは、最先端のセグメンテーションモデルを用いて、重要な胎児解剖を意味的にセグメンテーションする。
その結果, セグメンテーション性能のよいネットワークは, バイオメトリ推定においてより正確であることが示唆された。
論文 参考訳(メタデータ) (2021-07-12T08:42:31Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Spontaneous preterm birth prediction using convolutional neural networks [8.47519763941156]
毎年1500万人の赤ちゃんが生まれ過ぎている。
妊娠末期(PTB)の合併症により、毎年約100万人が死亡している。
論文 参考訳(メタデータ) (2020-08-16T21:21:33Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
生存時間(OS)の早期かつ正確な予測は、脳腫瘍患者に対するより良い治療計画を得るのに役立つ。
既存の予測手法は、磁気共鳴(MR)ボリュームの局所的な病変領域における放射能特性に依存している。
我々は,マルチモーダルマルチチャネルネットワーク(M2Net)のエンドツーエンドOS時間予測モデルを提案する。
論文 参考訳(メタデータ) (2020-06-01T05:21:37Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
胎児の頭部全体を米国全巻に分割する,最初の完全自動化ソリューションを提案する。
セグメント化タスクは、まずエンコーダ-デコーダディープアーキテクチャの下で、エンドツーエンドのボリュームマッピングとして定式化される。
次に,セグメンタとハイブリットアテンションスキーム(HAS)を組み合わせることで,識別的特徴を選択し,非情報量的特徴を抑える。
論文 参考訳(メタデータ) (2020-04-28T14:43:05Z) - FetusMap: Fetal Pose Estimation in 3D Ultrasound [42.59502360552173]
そこで本研究では, 胎児の3次元姿勢を推定し, その定量的解析を容易にすることを提案する。
これは文学における胎児の3次元ポーズ推定に関する最初の研究である。
本稿では、深層ネットワークを微調整し、視覚的に妥当なポーズ予測を形成するための自己教師付き学習(SSL)フレームワークを提案する。
論文 参考訳(メタデータ) (2019-10-11T01:45:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。