論文の概要: Psychiatric Scale Guided Risky Post Screening for Early Detection of
Depression
- arxiv url: http://arxiv.org/abs/2205.09497v1
- Date: Thu, 19 May 2022 12:11:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-21 01:14:30.654054
- Title: Psychiatric Scale Guided Risky Post Screening for Early Detection of
Depression
- Title(参考訳): うつ病早期発見のための精神医学的尺度誘導後スクリーニング
- Authors: Zhiling Zhang, Siyuan Chen, Mengyue Wu, Kenny Q. Zhu
- Abstract要約: うつ病は世界にとって顕著な健康上の課題であり、オンライン投稿からのうつ病の早期発見(ERD)は脅威に対処するための有望なテクニックである。
本稿では,臨床うつ病の尺度で定義した次元に関連する危険ポストを捕捉する精神科的尺度誘導型リスクポストスクリーニング法を提案する。
BERT (HAN-BERT) を内蔵した階層型注意ネットワークを提案する。
- 参考スコア(独自算出の注目度): 22.254532020321925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depression is a prominent health challenge to the world, and early risk
detection (ERD) of depression from online posts can be a promising technique
for combating the threat. Early depression detection faces the challenge of
efficiently tackling streaming data, balancing the tradeoff between timeliness,
accuracy and explainability. To tackle these challenges, we propose a
psychiatric scale guided risky post screening method that can capture risky
posts related to the dimensions defined in clinical depression scales, and
providing interpretable diagnostic basis. A Hierarchical Attentional Network
equipped with BERT (HAN-BERT) is proposed to further advance explainable
predictions. For ERD, we propose an online algorithm based on an evolving queue
of risky posts that can significantly reduce the number of model inferences to
boost efficiency. Experiments show that our method outperforms the competitive
feature-based and neural models under conventional depression detection
settings, and achieves simultaneous improvement in both efficacy and efficiency
for ERD.
- Abstract(参考訳): うつ病は世界にとって顕著な健康上の課題であり、オンライン投稿からのうつ病の早期発見(ERD)は脅威に対処するための有望なテクニックである。
早期抑うつ検出は、タイムライン間のトレードオフ、正確性、説明可能性のバランスをとることで、ストリーミングデータに効率的に取り組むという課題に直面している。
これらの課題に取り組むために, 臨床抑うつ尺度で定義された次元に関連するリスクポストを捉え, 解釈可能な診断基準を提示できる精神医学的尺度誘導後スクリーニング法を提案する。
BERT (HAN-BERT) を内蔵した階層型注意ネットワークを提案する。
erdでは,リスクの高い投稿の待ち行列に基づくオンラインアルゴリズムを提案し,効率を高めるためにモデル推論の回数を大幅に削減する。
提案手法は,従来の抑うつ検出条件下での競合的特徴量モデルとニューラルモデルよりも優れており,erdの有効性と効率の両立を両立させる。
関連論文リスト
- A BERT-Based Summarization approach for depression detection [1.7363112470483526]
うつ病は世界中で流行する精神疾患であり、対処されないと深刻な反感を引き起こす可能性がある。
機械学習と人工知能は、さまざまなデータソースからのうつ病指標を自律的に検出することができる。
本研究では,入力テキストの長さと複雑さを低減させる前処理手法として,テキスト要約を提案する。
論文 参考訳(メタデータ) (2024-09-13T02:14:34Z) - The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks [90.52808174102157]
医療画像や自律運転などの安全クリティカルな応用においては、高い敵の堅牢性を維持し、潜在的敵の攻撃から保護することが不可欠である。
敵対的に訓練されたモデルに固有の不確実性に関して、注目すべき知識ギャップが残っている。
本研究では,共形予測(CP)の性能を標準対向攻撃の文脈で検証することにより,ディープラーニングモデルの不確実性について検討する。
論文 参考訳(メタデータ) (2024-05-14T18:05:19Z) - DPMesh: Exploiting Diffusion Prior for Occluded Human Mesh Recovery [71.6345505427213]
DPMeshは、人間のメッシュリカバリを排除した革新的なフレームワークである。
これは、事前訓練されたテキスト・ツー・イメージ拡散モデルに埋め込まれた対象構造と空間的関係について、より深い拡散に乗じる。
論文 参考訳(メタデータ) (2024-04-01T18:59:13Z) - Depression Detection on Social Media with Large Language Models [23.075317886505193]
抑うつ検出は、ソーシャルメディア上の投稿履歴を分析して、個人が抑うつに苦しむかどうかを判断することを目的としている。
本稿では,医学的知識と大規模言語モデルの最近の進歩を融合した,DORISと呼ばれる新規なうつ病検出システムを提案する。
論文 参考訳(メタデータ) (2024-03-16T01:01:16Z) - Detecting mental disorder on social media: a ChatGPT-augmented
explainable approach [1.7999333451993955]
デジタル時代には、ソーシャルメディア上で表現されるうつ病症状の流行が深刻な懸念を抱いている。
本稿では,Large Language Models(LLM)とeXplainable Artificial Intelligence(XAI)とChatGPTのような対話エージェントを効果的に組み合わせた新しい手法を提案する。
説明は、Twitter固有のBERTの変種であるBERTweetを、新しい自己説明モデル、BERT-XDDに統合することで達成される。
ChatGPTを使用して解釈可能性をさらに強化し、技術的説明を人間可読な注釈に変換する。
論文 参考訳(メタデータ) (2024-01-30T22:22:55Z) - Towards More Efficient Depression Risk Recognition via Gait [12.28595811609976]
うつ病は世界中で2億8000万人を超える人に影響を及ぼす。早期発見とタイムリーな介入は、再発の促進、再発の防止、うつ病に伴う感情的・財政的負担の軽減に不可欠である。
歩行とうつ病リスクの相関が実証的に確立されている。
この研究はまず、1200人以上の個人、40,000人の歩行シーケンスを含む大規模な歩行データベースを構築し、6つの視点と3種類の服装をカバーした。
深層学習に基づくうつ病リスク認識モデルを提案し,手作りアプローチの限界を克服した。
論文 参考訳(メタデータ) (2023-10-10T03:34:31Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Toward Robust Diagnosis: A Contour Attention Preserving Adversarial
Defense for COVID-19 Detection [10.953610196636784]
本稿では,肺腔エッジ抽出に基づく Contour Attention Preserving (CAP) 法を提案する。
実験結果から, 本手法は, 複数の対角防御および一般化タスクにおいて, 最先端の性能を実現することが示唆された。
論文 参考訳(メタデータ) (2022-11-30T08:01:23Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
我々は,個人が感染するリスクを推定するためにベイズ推定法を開発した。
本稿では,感染防止のための検査・隔離戦略を最適化するために,確率論的リスク推定手法を提案する。
我々のアプローチは、最近接触した個人間の通信のみを必要とする、完全に分散されたアルゴリズムに変換されます。
論文 参考訳(メタデータ) (2020-09-20T12:24:45Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。