論文の概要: Augmented Lagrangian Methods for Time-varying Constrained Online Convex
Optimization
- arxiv url: http://arxiv.org/abs/2205.09571v1
- Date: Thu, 19 May 2022 14:03:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-20 23:20:14.377952
- Title: Augmented Lagrangian Methods for Time-varying Constrained Online Convex
Optimization
- Title(参考訳): 時間制約付きオンライン凸最適化のための拡張ラグランジアン法
- Authors: Haoyang Liu and Xiantao Xiao and Liwei Zhang
- Abstract要約: オンライン凸最適化(OCO)と時間的損失と制約関数について検討する。
まず,時間変動関数制約OCOのためのモデルベース拡張ラグランジアン法(MALM)のクラスを開発する。
提案アルゴリズムの効率性を示すために, 制約OCOのいくつかの例について数値計算を行った。
- 参考スコア(独自算出の注目度): 1.662966122370634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider online convex optimization (OCO) with time-varying
loss and constraint functions. Specifically, the decision maker chooses
sequential decisions based only on past information, meantime the loss and
constraint functions are revealed over time. We first develop a class of
model-based augmented Lagrangian methods (MALM) for time-varying functional
constrained OCO (without feedback delay). Under standard assumptions, we
establish sublinear regret and sublinear constraint violation of MALM.
Furthermore, we extend MALM to deal with time-varying functional constrained
OCO with delayed feedback, in which the feedback information of loss and
constraint functions is revealed to decision maker with delays. Without
additional assumptions, we also establish sublinear regret and sublinear
constraint violation for the delayed version of MALM. Finally, numerical
results for several examples of constrained OCO including online network
resource allocation, online logistic regression and online quadratically
constrained quadratical program are presented to demonstrate the efficiency of
the proposed algorithms.
- Abstract(参考訳): 本稿では,オンライン凸最適化(OCO)と時間的損失と制約関数について考察する。
具体的には、過去の情報のみに基づいて順次決定を行うが、時間とともに損失や制約関数が明らかにされる。
まず, 時間変動関数制約OCOのためのモデルベース拡張ラグランジアン法 (MALM) のクラスを (フィードバックの遅れなく) 開発した。
標準的な仮定では、MALMのサブリニア後悔とサブリニア制約違反を確立する。
さらに,遅延フィードバックを伴う時間変動機能制約付きocoに対応するためにmalmを拡張し,遅延のある意思決定者に損失と制約関数のフィードバック情報を開示する。
追加の仮定がなければ,MALMの遅延バージョンに対するサブリニア後悔とサブリニア制約違反も成立する。
最後に,オンラインネットワークリソース割り当て,オンラインロジスティック回帰,オンライン2次制約付き二次プログラムなど,制約付きocoのいくつかの例について数値計算を行い,提案アルゴリズムの効率性を示す。
関連論文リスト
- Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
本稿では,属性制御付き大規模言語モデル(LLM)の制約学習スキーマを提案する。
提案手法は, ベンチマーク上での競合性能と毒性検出タスクを達成しながら, 不適切な応答を少ないLCMに導出することを示す。
論文 参考訳(メタデータ) (2024-10-07T23:38:58Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
SDMU (Sequential Decision Making Under Uncertainty) は、エネルギー、金融、サプライチェーンといった多くの領域において、ユビキタスである。
いくつかのSDMUは、自然にマルチステージ問題(MSP)としてモデル化されているが、結果として得られる最適化は、計算の観点からは明らかに困難である。
本稿では,2段階の一般決定規則(TS-GDR)を導入し,線形関数を超えて政策空間を一般化する手法を提案する。
TS-GDRの有効性は、TS-LDR(Two-Stage Deep Decision Rules)と呼ばれるディープリカレントニューラルネットワークを用いたインスタンス化によって実証される。
論文 参考訳(メタデータ) (2024-05-23T18:19:47Z) - Regret Analysis of Policy Optimization over Submanifolds for Linearly
Constrained Online LQG [12.201535821920624]
制御器に与えられた線形制約を持つオンライン線形二次ガウス問題について検討する。
関数列の第1次および第2次情報に対する予測に基づいてオンラインコントローラを提供するオンライン楽観的ニュートン(OONM)を提案する。
論文 参考訳(メタデータ) (2024-03-13T14:06:18Z) - Primal-Dual Contextual Bayesian Optimization for Control System Online
Optimization with Time-Average Constraints [21.38692458445459]
本稿では,制約付き閉ループ制御システムのオンライン性能最適化問題について検討する。
動的最適解に対する線形累積後悔を克服する主元-双対文脈ベイズ最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-12T18:37:52Z) - Learning-Assisted Algorithm Unrolling for Online Optimization with
Budget Constraints [27.84415856657607]
我々はLAAU(Learning-Assisted Algorithm Unrolling)と呼ばれる新しい機械学習支援アンローリング手法を提案する。
バックプロパゲーションによる効率的なトレーニングには、時間とともに決定パイプラインの勾配を導出します。
また、トレーニングデータがオフラインで利用可能で、オンラインで収集できる場合の2つのケースの平均的なコスト境界も提供します。
論文 参考訳(メタデータ) (2022-12-03T20:56:29Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
本稿では,不確実量を比較する問題に対して,単純かつ効率的なアプローチを開発する。
我々はラグランジアンの内部最適化をサロゲート近似の学習問題として再考した。
提案したライト-SDは、ファイナンスからサプライチェーン管理に至るまで、いくつかの代表的な問題において優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-14T21:54:31Z) - Online Nonsubmodular Minimization with Delayed Costs: From Full
Information to Bandit Feedback [98.7678704343537]
我々は,オンラインおよび近似的オンライン帯域勾配勾配アルゴリズムのいくつかの変種に対する後悔の保証を,特別な構造を持つ非部分モジュラ関数のクラスに焦点をあてる。
我々は,決定の選択と帰属費用の受け取りの遅れが無拘束である場合でも,エージェントの完全な情報と盗賊のフィードバック設定に対する後悔の限界を導出する。
論文 参考訳(メタデータ) (2022-05-15T08:27:12Z) - Conservative Distributional Reinforcement Learning with Safety
Constraints [22.49025480735792]
安全探索は、期待される長期コストが制約されるマルコフ決定問題とみなすことができる。
従来の非政治アルゴリズムは、制約付き最適化問題をラグランジアン緩和手法を導入して、対応する制約なしの双対問題に変換する。
本稿では,ポストリオ政策最適化による保守的分布最大化という,非政治的強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-18T19:45:43Z) - Delay-Tolerant Constrained OCO with Application to Network Resource
Allocation [44.67787270821051]
マルチスロットフィードバック遅延によるオンライン凸最適化(OCO)を検討します。
エージェントは、時間変動凸損失関数の蓄積を最小限に抑えるために、一連のオンライン決定を行う。
情報フィードバックと意思決定の更新の非同期性に取り組むために,二重正規化による新たな制約ペナルティを用いた遅延耐性制約OCOを提案する。
論文 参考訳(メタデータ) (2021-05-09T19:32:33Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。