論文の概要: Enhancing Slot Tagging with Intent Features for Task Oriented Natural
Language Understanding using BERT
- arxiv url: http://arxiv.org/abs/2205.09732v2
- Date: Mon, 23 May 2022 10:57:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-24 12:01:18.191320
- Title: Enhancing Slot Tagging with Intent Features for Task Oriented Natural
Language Understanding using BERT
- Title(参考訳): BERTを用いたタスク指向自然言語理解のためのインテント特徴付きスロットタギングの強化
- Authors: Shruthi Hariharan, Vignesh Kumar Krishnamurthy, Utkarsh, Jayantha
Gowda Sarapanahalli
- Abstract要約: 本研究は,3つの手法を用いて意図ラベルの特徴を活用することによる,関節インテントとスロット検出モデルのスロットタギングタスクの効果について検討する。
我々は,音声言語データセットSNIPSとATISのベンチマークおよび大規模プライベートBixbyデータセットの評価を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent joint intent detection and slot tagging models have seen improved
performance when compared to individual models. In many real-world datasets,
the slot labels and values have a strong correlation with their intent labels.
In such cases, the intent label information may act as a useful feature to the
slot tagging model. In this paper, we examine the effect of leveraging intent
label features through 3 techniques in the slot tagging task of joint intent
and slot detection models. We evaluate our techniques on benchmark spoken
language datasets SNIPS and ATIS, as well as over a large private Bixby dataset
and observe an improved slot-tagging performance over state-of-the-art models.
- Abstract(参考訳): 最近のジョイントインテント検出とスロットタギングモデルでは,個々のモデルと比較して性能が向上している。
多くの現実世界のデータセットでは、スロットラベルと値はインテントラベルと強い相関がある。
このような場合、インテントラベル情報はスロットタグ付けモデルに有用な機能として機能する。
本稿では,3つの手法による意図ラベル特徴の活用が,関節インテントとスロット検出モデルのスロットタギングタスクに与える影響について検討する。
我々は,音声言語データセットSNIPSとATISのベンチマークおよび大規模プライベートBixbyデータセットの評価を行い,最先端モデルに対するスロットタグ付け性能の改善について検討した。
関連論文リスト
- A Self Supervised StyleGAN for Image Annotation and Classification with
Extremely Limited Labels [35.43549147657739]
画像アノテーションと分類のための自己教師型アプローチであるSS-StyleGANを提案する。
提案手法は,50と10の小さなラベル付きデータセットを用いて,強力な分類結果が得られることを示す。
論文 参考訳(メタデータ) (2023-12-26T09:46:50Z) - MISCA: A Joint Model for Multiple Intent Detection and Slot Filling with
Intent-Slot Co-Attention [9.414164374919029]
グラフに基づくジョイントモデルである最近の高度なアプローチは、まだ2つの潜在的な問題に直面している。
我々はMISCAというジョイントモデルを提案する。
我々のMISCAは、意図-スロットのコアテンション機構とラベルアテンション機構の基盤層を導入している。
論文 参考訳(メタデータ) (2023-12-10T03:38:41Z) - Slot Induction via Pre-trained Language Model Probing and Multi-level
Contrastive Learning [62.839109775887025]
トークンレベルのスロットアノテーションの明示的な知識なしでスロット境界を誘導することを目的としたスロットインジェクション(SI)タスク。
PLMから抽出した教師なし意味知識を活用するために、教師なし事前学習言語モデル(PLM)探索とコントラスト学習機構を活用することを提案する。
提案手法は,2つのNLUベンチマークデータセット上でトークンレベルの教師付きモデルとのギャップを埋めることができ,SIタスクに有効であることが示されている。
論文 参考訳(メタデータ) (2023-08-09T05:08:57Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
この研究は、複数のデータセットからラベル空間の結合を予測する単一の視覚的関係検出器のトレーニングに焦点を当てている。
視覚と言語モデルを活用した統合視覚関係検出のための新しいボトムアップ手法UniVRDを提案する。
人物体間相互作用検出とシーングラフ生成の双方による実験結果から,本モデルの競合性能が示された。
論文 参考訳(メタデータ) (2023-03-16T00:06:28Z) - A Dynamic Graph Interactive Framework with Label-Semantic Injection for
Spoken Language Understanding [43.48113981442722]
本稿では,まずラベルのセマンティック情報を利用して,モデルに付加的な信号を与え,よりリッチな事前情報を与える,DGIFというフレームワークを提案する。
本稿では,ラベルセマンティクスの注入に基づく対話型グラフ構築手法を提案する。
論文 参考訳(メタデータ) (2022-11-08T05:57:46Z) - Generate, Annotate, and Learn: Generative Models Advance Self-Training
and Knowledge Distillation [58.64720318755764]
Semi-Supervised Learning (SSL)は多くのアプリケーションドメインで成功している。
知識蒸留(KD)により、深層ネットワークとアンサンブルの圧縮が可能となり、新しいタスク固有の未ラベルの例について知識を蒸留する際に最良の結果が得られる。
我々は、非条件生成モデルを用いて、ドメイン内の未ラベルデータを合成する「生成、注釈、学習(GAL)」と呼ばれる一般的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-11T05:01:24Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
知識グラフ(KG)は、推薦システムにおいてますます重要な役割を果たす。
既存のGNNベースのモデルは、きめ細かいインテントレベルでのユーザ項目関係の特定に失敗します。
本稿では,新しいモデルである知識グラフベースインテントネットワーク(kgin)を提案する。
論文 参考訳(メタデータ) (2021-02-14T03:21:36Z) - Joint Intent Detection and Slot Filling with Wheel-Graph Attention
Networks [6.939768185086755]
本稿では,車輪グラフ注意ネットワーク(Wheel-GAT)を用いた新しいジョイントモデルを提案する。
発話のためのグラフ構造を構築するために、意図ノード、スロットノード、有向エッジを作成する。
論文 参考訳(メタデータ) (2021-02-09T02:37:56Z) - Disentangled Graph Collaborative Filtering [100.26835145396782]
Disentangled Graph Collaborative Filtering (DGCF)は、インタラクションデータからユーザとアイテムの情報表現を学ぶための新しいモデルである。
ユーザ・イテムのインタラクション毎に意図を超越した分布をモデル化することにより、インテント・アウェアなインタラクショングラフと表現を反復的に洗練する。
DGCFはNGCF、DisenGCN、MacridVAEといった最先端モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2020-07-03T15:37:25Z) - AGIF: An Adaptive Graph-Interactive Framework for Joint Multiple Intent
Detection and Slot Filling [69.59096090788125]
本稿では,多目的検出とスロットフィリングを併用する適応グラフ対話フレームワーク(AGIF)を提案する。
スロットとインテントの強い相関関係をモデル化するために,インテント-スロットグラフ相互作用層を導入する。
このような相互作用層が各トークンに適応的に適用され、関連する意図情報を自動抽出する利点がある。
論文 参考訳(メタデータ) (2020-04-21T15:07:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。