Enhancing Slot Tagging with Intent Features for Task Oriented Natural
Language Understanding using BERT
- URL: http://arxiv.org/abs/2205.09732v2
- Date: Mon, 23 May 2022 10:57:46 GMT
- Title: Enhancing Slot Tagging with Intent Features for Task Oriented Natural
Language Understanding using BERT
- Authors: Shruthi Hariharan, Vignesh Kumar Krishnamurthy, Utkarsh, Jayantha
Gowda Sarapanahalli
- Abstract summary: We examine the effect of leveraging intent label features through 3 techniques in the slot tagging task of joint intent and slot detection models.
We evaluate our techniques on benchmark spoken language datasets SNIPS and ATIS, as well as over a large private Bixby dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent joint intent detection and slot tagging models have seen improved
performance when compared to individual models. In many real-world datasets,
the slot labels and values have a strong correlation with their intent labels.
In such cases, the intent label information may act as a useful feature to the
slot tagging model. In this paper, we examine the effect of leveraging intent
label features through 3 techniques in the slot tagging task of joint intent
and slot detection models. We evaluate our techniques on benchmark spoken
language datasets SNIPS and ATIS, as well as over a large private Bixby dataset
and observe an improved slot-tagging performance over state-of-the-art models.
Related papers
- A Self Supervised StyleGAN for Image Annotation and Classification with
Extremely Limited Labels [35.43549147657739]
We propose SS-StyleGAN, a self-supervised approach for image annotation and classification suitable for extremely small annotated datasets.
We show that the proposed method attains strong classification results using small labeled datasets of sizes 50 and even 10.
arXiv Detail & Related papers (2023-12-26T09:46:50Z) - MISCA: A Joint Model for Multiple Intent Detection and Slot Filling with
Intent-Slot Co-Attention [9.414164374919029]
Recent advanced approaches, which are joint models based on graphs, might still face two potential issues.
We propose a joint model named MISCA.
Our MISCA introduces an intent-slot co-attention mechanism and an underlying layer of label attention mechanism.
arXiv Detail & Related papers (2023-12-10T03:38:41Z) - Slot Induction via Pre-trained Language Model Probing and Multi-level
Contrastive Learning [62.839109775887025]
Slot Induction (SI) task whose objective is to induce slot boundaries without explicit knowledge of token-level slot annotations.
We propose leveraging Unsupervised Pre-trained Language Model (PLM) Probing and Contrastive Learning mechanism to exploit unsupervised semantic knowledge extracted from PLM.
Our approach is shown to be effective in SI task and capable of bridging the gaps with token-level supervised models on two NLU benchmark datasets.
arXiv Detail & Related papers (2023-08-09T05:08:57Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets.
We propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models.
Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model.
arXiv Detail & Related papers (2023-03-16T00:06:28Z) - A Dynamic Graph Interactive Framework with Label-Semantic Injection for
Spoken Language Understanding [43.48113981442722]
We propose a framework termed DGIF, which first leverages the semantic information of labels to give the model additional signals and enriched priors.
We propose a novel approach to construct the interactive graph based on the injection of label semantics, which can automatically update the graph to better alleviate error propagation.
arXiv Detail & Related papers (2022-11-08T05:57:46Z) - Generate, Annotate, and Learn: Generative Models Advance Self-Training
and Knowledge Distillation [58.64720318755764]
Semi-Supervised Learning (SSL) has seen success in many application domains, but this success often hinges on the availability of task-specific unlabeled data.
Knowledge distillation (KD) has enabled compressing deep networks and ensembles, achieving the best results when distilling knowledge on fresh task-specific unlabeled examples.
We present a general framework called "generate, annotate, and learn (GAL)" that uses unconditional generative models to synthesize in-domain unlabeled data.
arXiv Detail & Related papers (2021-06-11T05:01:24Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Joint Intent Detection and Slot Filling with Wheel-Graph Attention
Networks [6.939768185086755]
We propose a new joint model with a wheel-graph attention network (Wheel-GAT) which is able to model interrelated connections directly for intent detection and slot filling.
To construct a graph structure for utterances, we create intent nodes, slot nodes, and directed edges.
arXiv Detail & Related papers (2021-02-09T02:37:56Z) - Disentangled Graph Collaborative Filtering [100.26835145396782]
Disentangled Graph Collaborative Filtering (DGCF) is a new model for learning informative representations of users and items from interaction data.
By modeling a distribution over intents for each user-item interaction, we iteratively refine the intent-aware interaction graphs and representations.
DGCF achieves significant improvements over several state-of-the-art models like NGCF, DisenGCN, and MacridVAE.
arXiv Detail & Related papers (2020-07-03T15:37:25Z) - AGIF: An Adaptive Graph-Interactive Framework for Joint Multiple Intent
Detection and Slot Filling [69.59096090788125]
In this paper, we propose an Adaptive Graph-Interactive Framework (AGIF) for joint multiple intent detection and slot filling.
We introduce an intent-slot graph interaction layer to model the strong correlation between the slot and intents.
Such an interaction layer is applied to each token adaptively, which has the advantage to automatically extract the relevant intents information.
arXiv Detail & Related papers (2020-04-21T15:07:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.