A Self Supervised StyleGAN for Image Annotation and Classification with
Extremely Limited Labels
- URL: http://arxiv.org/abs/2312.15972v1
- Date: Tue, 26 Dec 2023 09:46:50 GMT
- Title: A Self Supervised StyleGAN for Image Annotation and Classification with
Extremely Limited Labels
- Authors: Dana Cohen Hochberg and Hayit Greenspan and Raja Giryes
- Abstract summary: We propose SS-StyleGAN, a self-supervised approach for image annotation and classification suitable for extremely small annotated datasets.
We show that the proposed method attains strong classification results using small labeled datasets of sizes 50 and even 10.
- Score: 35.43549147657739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent success of learning-based algorithms can be greatly attributed to
the immense amount of annotated data used for training. Yet, many datasets lack
annotations due to the high costs associated with labeling, resulting in
degraded performances of deep learning methods. Self-supervised learning is
frequently adopted to mitigate the reliance on massive labeled datasets since
it exploits unlabeled data to learn relevant feature representations. In this
work, we propose SS-StyleGAN, a self-supervised approach for image annotation
and classification suitable for extremely small annotated datasets. This novel
framework adds self-supervision to the StyleGAN architecture by integrating an
encoder that learns the embedding to the StyleGAN latent space, which is
well-known for its disentangled properties. The learned latent space enables
the smart selection of representatives from the data to be labeled for improved
classification performance. We show that the proposed method attains strong
classification results using small labeled datasets of sizes 50 and even 10. We
demonstrate the superiority of our approach for the tasks of COVID-19 and liver
tumor pathology identification.
Related papers
- ERASE: Error-Resilient Representation Learning on Graphs for Label Noise
Tolerance [53.73316938815873]
We propose a method called ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE) to learn representations with error tolerance.
ERASE combines prototype pseudo-labels with propagated denoised labels and updates representations with error resilience.
Our method can outperform multiple baselines with clear margins in broad noise levels and enjoy great scalability.
arXiv Detail & Related papers (2023-12-13T17:59:07Z) - From Categories to Classifiers: Name-Only Continual Learning by Exploring the Web [118.67589717634281]
Continual learning often relies on the availability of extensive annotated datasets, an assumption that is unrealistically time-consuming and costly in practice.
We explore a novel paradigm termed name-only continual learning where time and cost constraints prohibit manual annotation.
Our proposed solution leverages the expansive and ever-evolving internet to query and download uncurated webly-supervised data for image classification.
arXiv Detail & Related papers (2023-11-19T10:43:43Z) - LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds [62.49198183539889]
We propose a label-efficient semantic segmentation pipeline for outdoor scenes with LiDAR point clouds.
Our method co-designs an efficient labeling process with semi/weakly supervised learning.
Our proposed method is even highly competitive compared to the fully supervised counterpart with 100% labels.
arXiv Detail & Related papers (2022-10-14T19:13:36Z) - Dominant Set-based Active Learning for Text Classification and its
Application to Online Social Media [0.0]
We present a novel pool-based active learning method for the training of large unlabeled corpus with minimum annotation cost.
Our proposed method does not have any parameters to be tuned, making it dataset-independent.
Our method achieves a higher performance in comparison to the state-of-the-art active learning strategies.
arXiv Detail & Related papers (2022-01-28T19:19:03Z) - Meta Propagation Networks for Graph Few-shot Semi-supervised Learning [39.96930762034581]
We propose a novel network architecture equipped with a novel meta-learning algorithm to solve this problem.
In essence, our framework Meta-PN infers high-quality pseudo labels on unlabeled nodes via a meta-learned label propagation strategy.
Our approach offers easy and substantial performance gains compared to existing techniques on various benchmark datasets.
arXiv Detail & Related papers (2021-12-18T00:11:56Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
We propose SCARF, a technique for contrastive learning, where views are formed by corrupting a random subset of features.
We show that SCARF complements existing strategies and outperforms alternatives like autoencoders.
arXiv Detail & Related papers (2021-06-29T08:08:33Z) - Semi-supervised Active Learning for Instance Segmentation via Scoring
Predictions [25.408505612498423]
We propose a novel and principled semi-supervised active learning framework for instance segmentation.
Specifically, we present an uncertainty sampling strategy named Triplet Scoring Predictions (TSP) to explicitly incorporate samples ranking clues from classes, bounding boxes and masks.
Results on medical images datasets demonstrate that the proposed method results in the embodiment of knowledge from available data in a meaningful way.
arXiv Detail & Related papers (2020-12-09T02:36:52Z) - SLADE: A Self-Training Framework For Distance Metric Learning [75.54078592084217]
We present a self-training framework, SLADE, to improve retrieval performance by leveraging additional unlabeled data.
We first train a teacher model on the labeled data and use it to generate pseudo labels for the unlabeled data.
We then train a student model on both labels and pseudo labels to generate final feature embeddings.
arXiv Detail & Related papers (2020-11-20T08:26:10Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
We present a re-design of pseudo-labeling to generate structured pseudo labels for training with unlabeled or weakly-labeled data.
We demonstrate the effectiveness of the proposed pseudo-labeling strategy in both low-data and high-data regimes.
arXiv Detail & Related papers (2020-10-19T17:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.