Ground-state energy distribution of disordered many-body quantum systems
- URL: http://arxiv.org/abs/2205.09771v3
- Date: Wed, 30 Nov 2022 20:04:41 GMT
- Title: Ground-state energy distribution of disordered many-body quantum systems
- Authors: Wouter Buijsman, Tal\'ia L. M. Lezama, Tamar Leiser, Lea F. Santos
- Abstract summary: We focus on the ground-state energy distribution of disordered many-body quantum systems.
We derive an analytical expression that reproduces with high accuracy the ground-state energy distribution of the systems that we consider.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extreme-value distributions are studied in the context of a broad range of
problems, from the equilibrium properties of low-temperature disordered systems
to the occurrence of natural disasters. Our focus here is on the ground-state
energy distribution of disordered many-body quantum systems. We derive an
analytical expression that, upon tuning a parameter, reproduces with high
accuracy the ground-state energy distribution of the systems that we consider.
For some models, it agrees with the Tracy-Widom distribution obtained from
Gaussian random matrices. They include transverse Ising models, the Sachdev-Ye
model, and a randomized version of the PXP model. For other systems, such as
Bose-Hubbard models with random couplings and the disordered spin-1/2
Heisenberg chain used to investigate many-body localization, the shapes are at
odds with the Tracy-Widom distribution. Our analytical expression captures all
of these distributions, thus playing a role to the lowest energy level similar
to that played by the Brody distribution to the bulk of the spectrum.
Related papers
- Grassmann Variational Monte Carlo with neural wave functions [45.935798913942904]
We formalize the framework introduced by Pfau et al.citepfau2024accurate in terms of Grassmann geometry of the Hilbert space.<n>We validate our approach on the Heisenberg quantum spin model on the square lattice, achieving highly accurate energies and physical observables for a large number of excited states.
arXiv Detail & Related papers (2025-07-14T13:53:13Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Hessian-Informed Flow Matching [4.542719108171107]
Hessian-Informed Flow Matching is a novel approach that integrates the Hessian of an energy function into conditional flows.
This integration allows HI-FM to account for local curvature and anisotropic covariance structures.
Empirical evaluations on the MNIST and Lennard-Jones particles datasets demonstrate that HI-FM improves the likelihood of test samples.
arXiv Detail & Related papers (2024-10-15T09:34:52Z) - Universal distributions of overlaps from unitary dynamics in generic quantum many-body systems [0.0]
We study the preparation of a quantum state using a circuit of depth $t$ from a factorized state of $N$ sites.
We argue that in the appropriate scaling limit of large $t$ and $N$, the overlap between states evolved under generic many-body chaotic dynamics.
arXiv Detail & Related papers (2024-04-15T18:01:13Z) - Charge-resolved entanglement in the presence of topological defects [0.0]
We compute the charge-resolved entanglement entropy for a single interval in the low-lying states of the Su-Schrieffer-Heeger model.
We find that, compared to the unresolved counterpart and to the pure system, a richer structure of entanglement emerges.
arXiv Detail & Related papers (2023-06-27T15:03:46Z) - Machine learning in and out of equilibrium [58.88325379746631]
Our study uses a Fokker-Planck approach, adapted from statistical physics, to explore these parallels.
We focus in particular on the stationary state of the system in the long-time limit, which in conventional SGD is out of equilibrium.
We propose a new variation of Langevin dynamics (SGLD) that harnesses without replacement minibatching.
arXiv Detail & Related papers (2023-06-06T09:12:49Z) - Localization in the random XXZ quantum spin chain [55.2480439325792]
We study the many-body localization (MBL) properties of the Heisenberg XXZ spin-$frac12$ chain in a random magnetic field.
We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a nontrivial region of the parameter space.
arXiv Detail & Related papers (2022-10-26T17:25:13Z) - Improving application performance with biased distributions of quantum
states [0.0]
We analyze mixtures of Haar-random pure states with Dirichlet-distributed coefficients.
We analytically derive the concentration parameters required to match the mean purity of the Bures and Hilbert--Schmidt distributions.
We demonstrate how substituting these Dirichlet-weighted Haar mixtures in place of the Bures and Hilbert--Schmidt distributions results in measurable performance advantages.
arXiv Detail & Related papers (2021-07-15T23:29:10Z) - Dissipative evolution of quantum Gaussian states [68.8204255655161]
We derive a new model of dissipative time evolution based on unitary Lindblad operators.
As we demonstrate, the considered evolution proves useful both as a description for random scattering and as a tool in dissipator engineering.
arXiv Detail & Related papers (2021-05-26T16:03:34Z) - Entanglement Measures in a Nonequilibrium Steady State: Exact Results in
One Dimension [0.0]
Entanglement plays a prominent role in the study of condensed matter many-body systems.
We show that the scaling of entanglement with the length of a subsystem is highly unusual, containing both a volume-law linear term and a logarithmic term.
arXiv Detail & Related papers (2021-05-03T10:35:09Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Unbalanced Sobolev Descent [31.777218621726284]
We introduce Unbalanced Sobolev Descent (USD), a particle descent algorithm for transporting a high dimensional source distribution to a target distribution that does not necessarily have the same mass.
USD transports particles along flows of the witness function of the Sobolev-Fisher discrepancy (advection step) and reweighs the mass of particles with respect to this witness function (reaction step)
We show on synthetic examples that USD transports distributions with or without conservation of mass faster than previous particle descent algorithms.
arXiv Detail & Related papers (2020-09-29T16:43:38Z) - The Power Spherical distribution [27.20633592977323]
Power Spherical distribution retains important aspects of the von Mises-Fisher (vMF) distribution while addressing its main drawbacks.
We demonstrate the stability of Power Spherical distributions with a numerical experiment and further apply it to a variational auto-encoder trained on MNIST.
arXiv Detail & Related papers (2020-06-08T09:51:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.