Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers
- URL: http://arxiv.org/abs/2410.13746v1
- Date: Thu, 17 Oct 2024 16:42:12 GMT
- Title: Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers
- Authors: Yuchen Liang, Peizhong Ju, Yingbin Liang, Ness Shroff,
- Abstract summary: We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
- Score: 49.97755400231656
- License:
- Abstract: The denoising diffusion model has recently emerged as a powerful generative technique, capable of transforming noise into meaningful data. While theoretical convergence guarantees for diffusion models are well established when the target distribution aligns with the training distribution, practical scenarios often present mismatches. One common case is in zero-shot conditional diffusion sampling, where the target conditional distribution is different from the (unconditional) training distribution. These score-mismatched diffusion models remain largely unexplored from a theoretical perspective. In this paper, we present the first performance guarantee with explicit dimensional dependencies for general score-mismatched diffusion samplers, focusing on target distributions with finite second moments. We show that score mismatches result in an asymptotic distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions. This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise. Interestingly, the derived convergence upper bound offers useful guidance for designing a novel bias-optimal zero-shot sampler in linear conditional models that minimizes the asymptotic bias. For such bias-optimal samplers, we further establish convergence guarantees with explicit dependencies on dimension and conditioning, applied to several interesting target distributions, including those with bounded support and Gaussian mixtures. Our findings are supported by numerical studies.
Related papers
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Conditional sampling within generative diffusion models [12.608803080528142]
We present a review of existing computational approaches to conditional sampling within generative diffusion models.
We highlight key methodologies that either utilise the joint distribution, or rely on (pre-trained) marginal distributions with explicit likelihoods.
arXiv Detail & Related papers (2024-09-15T07:48:40Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
We develop constrained diffusion models based on desired distributions informed by requirements.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
Conditional diffusion models serve as the foundation of modern image synthesis and find extensive application in fields like computational biology and reinforcement learning.
Despite the empirical success, theory of conditional diffusion models is largely missing.
This paper bridges the gap by presenting a sharp statistical theory of distribution estimation using conditional diffusion models.
arXiv Detail & Related papers (2024-03-18T17:08:24Z) - Broadening Target Distributions for Accelerated Diffusion Models via a Novel Analysis Approach [49.97755400231656]
We show that a novel accelerated DDPM sampler achieves accelerated performance for three broad distribution classes not considered before.
Our results show an improved dependency on the data dimension $d$ among accelerated DDPM type samplers.
arXiv Detail & Related papers (2024-02-21T16:11:47Z) - Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution [2.1146241717926664]
We show that the Wasserstein GAN, constrained to left-invertible push-forward maps, generates distributions that avoid replication and significantly deviate from the empirical distribution.
Our most important contribution provides a finite-sample lower bound on the Wasserstein-1 distance between the generative distribution and the empirical one.
We also establish a finite-sample upper bound on the distance between the generative distribution and the true data-generating one.
arXiv Detail & Related papers (2023-07-31T06:11:57Z) - Flow Away your Differences: Conditional Normalizing Flows as an
Improvement to Reweighting [0.0]
We present an alternative to reweighting techniques for modifying distributions to account for a desired change in an underlying conditional distribution.
We employ conditional normalizing flows to learn the full conditional probability distribution.
In our examples, this leads to a statistical precision up to three times greater than using reweighting techniques with identical sample sizes for the source and target distributions.
arXiv Detail & Related papers (2023-04-28T16:33:50Z) - The Score-Difference Flow for Implicit Generative Modeling [1.309716118537215]
Implicit generative modeling aims to produce samples of synthetic data matching a target data distribution.
Recent work has approached the IGM problem from the perspective of pushing synthetic source data toward the target distribution.
We present the score difference between arbitrary target and source distributions as a flow that optimally reduces the Kullback-Leibler divergence between them.
arXiv Detail & Related papers (2023-04-25T15:21:12Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
arXiv Detail & Related papers (2023-03-03T11:31:55Z) - Convergence of denoising diffusion models under the manifold hypothesis [3.096615629099617]
Denoising diffusion models are a recent class of generative models exhibiting state-of-the-art performance in image and audio synthesis.
This paper provides the first convergence results for diffusion models in a more general setting.
arXiv Detail & Related papers (2022-08-10T12:50:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.