論文の概要: FairNorm: Fair and Fast Graph Neural Network Training
- arxiv url: http://arxiv.org/abs/2205.09977v1
- Date: Fri, 20 May 2022 06:10:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-23 15:07:18.630441
- Title: FairNorm: Fair and Fast Graph Neural Network Training
- Title(参考訳): FairNorm: 公正かつ高速なグラフニューラルネットワークトレーニング
- Authors: O. Deniz Kose, Yanning Shen
- Abstract要約: グラフニューラルネットワーク(GNN)は、多くのグラフベースの学習タスクの最先端を実現するために実証されている。
GNNは、訓練データ内のバイアスを継承し、さらに増幅し、特定のセンシティブなグループに対して不公平な結果をもたらす可能性があることが示されている。
この研究は、GNNベースの学習におけるバイアスを低減する統一正規化フレームワークであるFairNormを提案する。
- 参考スコア(独自算出の注目度): 9.492903649862761
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have been demonstrated to achieve
state-of-the-art for a number of graph-based learning tasks, which leads to a
rise in their employment in various domains. However, it has been shown that
GNNs may inherit and even amplify bias within training data, which leads to
unfair results towards certain sensitive groups. Meanwhile, training of GNNs
introduces additional challenges, such as slow convergence and possible
instability. Faced with these limitations, this work proposes FairNorm, a
unified normalization framework that reduces the bias in GNN-based learning
while also providing provably faster convergence. Specifically, FairNorm
employs fairness-aware normalization operators over different sensitive groups
with learnable parameters to reduce the bias in GNNs. The design of FairNorm is
built upon analyses that illuminate the sources of bias in graph-based
learning. Experiments on node classification over real-world networks
demonstrate the efficiency of the proposed scheme in improving fairness in
terms of statistical parity and equal opportunity compared to fairness-aware
baselines. In addition, it is empirically shown that the proposed framework
leads to faster convergence compared to the naive baseline where no
normalization is employed.
- Abstract(参考訳): グラフニューラルネットワーク(gnns)は、多くのグラフベースの学習タスクの最先端を達成することが実証されており、さまざまな領域での雇用の増加につながる。
しかし、GNNはトレーニングデータのバイアスを継承し、さらに増幅し、特定のセンシティブなグループに対して不公平な結果をもたらす可能性があることが示されている。
一方、GNNのトレーニングでは、収束の遅さや不安定性の可能性など、さらなる課題が導入されている。
このような制限に直面した本研究では,gnnベースの学習のバイアスを軽減すると同時に,より高速な収束を実現する統一正規化フレームワークfairnormを提案する。
具体的には、fairnormはgnnのバイアスを減らすために、学習可能なパラメータを持つ異なる敏感なグループに対してフェアネス認識正規化演算子を用いる。
FairNormの設計は、グラフベースの学習におけるバイアス源を照らす分析に基づいている。
実世界のネットワーク上でのノード分類実験は、統計的パリティと平等機会の観点でフェアネスを改善するための提案手法の効率を、フェアネス対応ベースラインと比較して示している。
さらに,提案手法は正規化を行わないナイーブベースラインと比較して,より高速に収束することが実証的に示されている。
関連論文リスト
- Towards Fair Graph Representation Learning in Social Networks [20.823461673845756]
本稿では, 十分性, 自立性, 分離性という3つの原則に基づいて, 公正表現学習の制約を導入する。
EAGNN法がグループフェアネスを効果的に達成できることを理論的に実証する。
論文 参考訳(メタデータ) (2024-10-15T10:57:02Z) - Disentangling, Amplifying, and Debiasing: Learning Disentangled Representations for Fair Graph Neural Networks [22.5976413484192]
本稿では,新しいGNNフレームワークであるDAB-GNNを提案する。
Dab-GNNは、正確性と公正性の最適バランスを達成するという点で、最先端の10のライバルを著しく上回っている。
論文 参考訳(メタデータ) (2024-08-23T07:14:56Z) - MAPPING: Debiasing Graph Neural Networks for Fair Node Classification
with Limited Sensitive Information Leakage [1.8238848494579714]
公正ノード分類のためのモデルに依存しない新しい脱バイアスフレームワーク MAPPing を提案する。
以上の結果から,MAPPingは実用性と公正性,および機密情報漏洩のプライバシーリスクとのトレードオフを良好に達成できることが示された。
論文 参考訳(メタデータ) (2024-01-23T14:59:46Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - Towards Fair Graph Neural Networks via Graph Counterfactual [38.721295940809135]
グラフニューラルネットワーク(GNN)は、グラフ上での表現(GNN)学習の優れた能力を示し、さまざまなタスクを容易にしている。
最近の研究によると、GNNはトレーニングデータからのバイアスを継承し、増幅する傾向にあり、高いシナリオでGNNが採用されることが懸念されている。
本研究では,非現実的な反事実を避けるために,非現実的な反事実をトレーニングデータから選択できる新しいフレームワークCAFを提案する。
論文 参考訳(メタデータ) (2023-07-10T23:28:03Z) - Fairness-Aware Graph Neural Networks: A Survey [53.41838868516936]
グラフニューラルネットワーク(GNN)はその表現力と最先端の予測性能によってますます重要になっている。
GNNは、基礎となるグラフデータと基本的な集約メカニズムによって生じる公平性の問題に悩まされる。
本稿では,GNNの公平性向上のためのフェアネス手法の検討と分類を行う。
論文 参考訳(メタデータ) (2023-07-08T08:09:06Z) - Analyzing the Effect of Sampling in GNNs on Individual Fairness [79.28449844690566]
グラフニューラルネットワーク(GNN)ベースの手法は、レコメンダシステムの分野を飽和させた。
我々は,GNNの学習を支援するために,グラフ上で個別の公平性を促進させる既存手法を拡張した。
本研究では,局所ニュアンスが表現学習における公平化促進の過程を導くことによって,ミニバッチトレーニングが個人の公正化を促進することを示す。
論文 参考訳(メタデータ) (2022-09-08T16:20:25Z) - Fair Node Representation Learning via Adaptive Data Augmentation [9.492903649862761]
この研究は、グラフニューラルネットワーク(GNN)を用いて得られるノード表現のバイアス源を理論的に説明する。
この分析に基づいて、本質的なバイアスを低減するために、公正に意識したデータ拡張フレームワークを開発した。
分析と提案手法は,様々なGNN学習機構の公平性を高めるために容易に利用できる。
論文 参考訳(メタデータ) (2022-01-21T05:49:15Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
トレーニンググラフとテストグラフの分散シフトを考慮せずにグラフニューラルネットワーク(GNN)を提案する。
このような環境では、GNNは、たとえ素早い相関であるとしても、予測のためのトレーニングセットに存在する微妙な統計的相関を利用する傾向がある。
本稿では,スプリアス相関の影響を排除するため,StableGNNと呼ばれる一般的な因果表現フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-20T18:57:18Z) - Shift-Robust GNNs: Overcoming the Limitations of Localized Graph
Training data [52.771780951404565]
Shift-Robust GNN (SR-GNN) は、バイアス付きトレーニングデータとグラフの真の推論分布の分布差を考慮に入れた設計である。
SR-GNNが他のGNNベースラインを精度良く上回り、バイアス付きトレーニングデータから生じる負の効果の少なくとも40%を排除していることを示す。
論文 参考訳(メタデータ) (2021-08-02T18:00:38Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
グラフニューラルネットワーク(GNN)は、グラフおよびリレーショナルデータにディープネットワークアーキテクチャを適用する手段として登場した。
本論文では,既存の作業に基づいて,GNN近傍サンプリングをマルチアームバンディット問題として扱う。
そこで本研究では,分散を低減し,不安定かつ非限定的な支払いを回避すべく設計されたバイアスをある程度導入した報酬関数を提案する。
論文 参考訳(メタデータ) (2021-03-01T15:55:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。