Classifying Human Activities using Machine Learning and Deep Learning
Techniques
- URL: http://arxiv.org/abs/2205.10325v1
- Date: Thu, 19 May 2022 05:20:04 GMT
- Title: Classifying Human Activities using Machine Learning and Deep Learning
Techniques
- Authors: Sanku Satya Uday, Satti Thanuja Pavani, T.Jaya Lakshmi, Rohit
Chivukula
- Abstract summary: Human Activity Recognition (HAR) describes the machines ability to recognize human actions.
Challenge in HAR is to overcome the difficulties of separating human activities based on the given data.
Deep Learning techniques like Long Short-Term Memory (LSTM), Bi-Directional LS classifier, Recurrent Neural Network (RNN), and Gated Recurrent Unit (GRU) are trained.
Experiment results proved that the Linear Support Vector in machine learning and Gated Recurrent Unit in Deep Learning provided better accuracy for human activity recognition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human Activity Recognition (HAR) describes the machines ability to recognize
human actions. Nowadays, most people on earth are health conscious, so people
are more interested in tracking their daily activities using Smartphones or
Smart Watches, which can help them manage their daily routines in a healthy
way. With this objective, Kaggle has conducted a competition to classify 6
different human activities distinctly based on the inertial signals obtained
from 30 volunteers smartphones. The main challenge in HAR is to overcome the
difficulties of separating human activities based on the given data such that
no two activities overlap. In this experimentation, first, Data visualization
is done on expert generated features with the help of t distributed Stochastic
Neighborhood Embedding followed by applying various Machine Learning techniques
like Logistic Regression, Linear SVC, Kernel SVM, Decision trees to better
classify the 6 distinct human activities. Moreover, Deep Learning techniques
like Long Short-Term Memory (LSTM), Bi-Directional LSTM, Recurrent Neural
Network (RNN), and Gated Recurrent Unit (GRU) are trained using raw time series
data. Finally, metrics like Accuracy, Confusion matrix, precision and recall
are used to evaluate the performance of the Machine Learning and Deep Learning
models. Experiment results proved that the Linear Support Vector Classifier in
machine learning and Gated Recurrent Unit in Deep Learning provided better
accuracy for human activity recognition compared to other classifiers.
Related papers
- Reinforcement Learning with Action Sequence for Data-Efficient Robot Learning [62.3886343725955]
We introduce a novel RL algorithm that learns a critic network that outputs Q-values over a sequence of actions.
By explicitly training the value functions to learn the consequence of executing a series of current and future actions, our algorithm allows for learning useful value functions from noisy trajectories.
arXiv Detail & Related papers (2024-11-19T01:23:52Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - A Matter of Annotation: An Empirical Study on In Situ and Self-Recall Activity Annotations from Wearable Sensors [56.554277096170246]
We present an empirical study that evaluates and contrasts four commonly employed annotation methods in user studies focused on in-the-wild data collection.
For both the user-driven, in situ annotations, where participants annotate their activities during the actual recording process, and the recall methods, where participants retrospectively annotate their data at the end of each day, the participants had the flexibility to select their own set of activity classes and corresponding labels.
arXiv Detail & Related papers (2023-05-15T16:02:56Z) - Towards Continual Egocentric Activity Recognition: A Multi-modal
Egocentric Activity Dataset for Continual Learning [21.68009790164824]
We present a multi-modal egocentric activity dataset for continual learning named UESTC-MMEA-CL.
It contains synchronized data of videos, accelerometers, and gyroscopes, for 32 types of daily activities, performed by 10 participants.
Results of egocentric activity recognition are reported when using separately, and jointly, three modalities: RGB, acceleration, and gyroscope.
arXiv Detail & Related papers (2023-01-26T04:32:00Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
This contribution statistically curates the training data to assess to what degree the physical characteristics of humans influence HAR performance.
We evaluate the performance of a state-of-the-art convolutional neural network on two HAR datasets that vary in the sensors, activities, and recording for time-series HAR.
arXiv Detail & Related papers (2023-01-19T12:33:50Z) - CHARM: A Hierarchical Deep Learning Model for Classification of Complex
Human Activities Using Motion Sensors [0.9594432031144714]
CHARM is a hierarchical deep learning model for classification of complex human activities using motion sensors.
It outperforms state-of-the-art supervised learning approaches for high-level activity recognition in terms of average accuracy and F1 scores.
The ability to learn low-level user activities when trained using only high-level activity labels may pave the way to semi-supervised learning of HAR tasks.
arXiv Detail & Related papers (2022-07-16T01:36:54Z) - HAR-GCNN: Deep Graph CNNs for Human Activity Recognition From Highly
Unlabeled Mobile Sensor Data [61.79595926825511]
Acquiring balanced datasets containing accurate activity labels requires humans to correctly annotate and potentially interfere with the subjects' normal activities in real-time.
We propose HAR-GCCN, a deep graph CNN model that leverages the correlation between chronologically adjacent sensor measurements to predict the correct labels for unclassified activities.
Har-GCCN shows superior performance relative to previously used baseline methods, improving classification accuracy by about 25% and up to 68% on different datasets.
arXiv Detail & Related papers (2022-03-07T01:23:46Z) - Incremental Learning Techniques for Online Human Activity Recognition [0.0]
We propose a human activity recognition (HAR) approach for the online prediction of physical movements.
We develop a HAR system containing monitoring software and a mobile application that collects accelerometer and gyroscope data.
Six incremental learning algorithms are employed and evaluated in this work and compared with several batch learning algorithms commonly used for developing offline HAR systems.
arXiv Detail & Related papers (2021-09-20T11:33:09Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
We conduct an extensive study of six offline learning algorithms for robot manipulation.
Our study analyzes the most critical challenges when learning from offline human data.
We highlight opportunities for learning from human datasets.
arXiv Detail & Related papers (2021-08-06T20:48:30Z) - Human Activity Recognition Using Multichannel Convolutional Neural
Network [0.0]
Human Activity Recognition (HAR) simply refers to the capacity of a machine to perceive human actions.
This paper describes a supervised learning method that can distinguish human actions based on data collected from practical human movements.
The model was tested on the UCI HAR dataset, which resulted in a 95.25% classification accuracy.
arXiv Detail & Related papers (2021-01-17T16:48:17Z) - HHAR-net: Hierarchical Human Activity Recognition using Neural Networks [2.4530909757679633]
This research aims at building a hierarchical classification with Neural Networks to recognize human activities.
We evaluate our model on the Extrasensory dataset; a dataset collected in the wild and containing data from smartphones and smartwatches.
arXiv Detail & Related papers (2020-10-28T17:06:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.