De novo design of protein target specific scaffold-based Inhibitors via
Reinforcement Learning
- URL: http://arxiv.org/abs/2205.10473v1
- Date: Sat, 21 May 2022 00:47:35 GMT
- Title: De novo design of protein target specific scaffold-based Inhibitors via
Reinforcement Learning
- Authors: Andrew D. McNaughton, Mridula S. Bontha, Carter R. Knutson, Jenna A.
Pope, Neeraj Kumar
- Abstract summary: Current approaches to develop molecules for a target protein are intuition-driven, hampered by slow iterative design-test cycles.
We propose a novel framework, called 3D-MolGNN$_RL$, coupling reinforcement learning to a deep generative model based on 3D-Scaffold.
Our approach can serve as an interpretable artificial intelligence (AI) tool for lead optimization with optimized activity, potency, and biophysical properties.
- Score: 8.210294479991118
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Efficient design and discovery of target-driven molecules is a critical step
in facilitating lead optimization in drug discovery. Current approaches to
develop molecules for a target protein are intuition-driven, hampered by slow
iterative design-test cycles due to computational challenges in utilizing 3D
structural data, and ultimately limited by the expertise of the chemist -
leading to bottlenecks in molecular design. In this contribution, we propose a
novel framework, called 3D-MolGNN$_{RL}$, coupling reinforcement learning (RL)
to a deep generative model based on 3D-Scaffold to generate target candidates
specific to a protein building up atom by atom from the starting core scaffold.
3D-MolGNN$_{RL}$ provides an efficient way to optimize key features by
multi-objective reward function within a protein pocket using parallel graph
neural network models. The agent learns to build molecules in 3D space while
optimizing the activity, binding affinity, potency, and synthetic accessibility
of the candidates generated for infectious disease protein targets. Our
approach can serve as an interpretable artificial intelligence (AI) tool for
lead optimization with optimized activity, potency, and biophysical properties.
Related papers
- Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - PILOT: Equivariant diffusion for pocket conditioned de novo ligand generation with multi-objective guidance via importance sampling [8.619610909783441]
We propose an in-silico approach for the $textitde novo$ generation of 3D ligand structures using the equivariant diffusion model PILOT.
Its multi-objective-based importance sampling strategy is designed to direct the model towards molecules that exhibit desired characteristics.
We employ PILOT to generate novel metrics for unseen protein pockets from the Kinodata-3D dataset.
arXiv Detail & Related papers (2024-05-23T17:58:28Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - Structure-Based Drug Design via 3D Molecular Generative Pre-training and Sampling [18.872622147078292]
We propose MolEdit3D to combine 3D molecular generation with optimization frameworks.
We develop a novel 3D graph editing model to generate molecules using fragments.
Then we employ a target-guided self-learning strategy to improve target-related properties using self-sampled molecules.
arXiv Detail & Related papers (2024-02-22T06:17:11Z) - xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering
the Language of Protein [76.18058946124111]
We propose a unified protein language model, xTrimoPGLM, to address protein understanding and generation tasks simultaneously.
xTrimoPGLM significantly outperforms other advanced baselines in 18 protein understanding benchmarks across four categories.
It can also generate de novo protein sequences following the principles of natural ones, and can perform programmable generation after supervised fine-tuning.
arXiv Detail & Related papers (2024-01-11T15:03:17Z) - Gradual Optimization Learning for Conformational Energy Minimization [69.36925478047682]
Gradual Optimization Learning Framework (GOLF) for energy minimization with neural networks significantly reduces the required additional data.
Our results demonstrate that the neural network trained with GOLF performs on par with the oracle on a benchmark of diverse drug-like molecules.
arXiv Detail & Related papers (2023-11-05T11:48:08Z) - Target-aware Variational Auto-encoders for Ligand Generation with
Multimodal Protein Representation Learning [2.01243755755303]
We introduce TargetVAE, a target-aware auto-encoder that generates with high binding affinities to arbitrary protein targets.
This is the first effort to unify different representations of proteins into a single model that we name as Protein Multimodal Network (PMN)
arXiv Detail & Related papers (2023-08-02T12:08:17Z) - 3D Equivariant Diffusion for Target-Aware Molecule Generation and
Affinity Prediction [9.67574543046801]
The inclusion of 3D structures during targeted drug design shows superior performance to other target-free models.
We develop a 3D equivariant diffusion model to solve the above challenges.
Our model could generate molecules with more realistic 3D structures and better affinities towards the protein targets, and improve binding affinity ranking and prediction without retraining.
arXiv Detail & Related papers (2023-03-06T23:01:43Z) - Reinforced Genetic Algorithm for Structure-based Drug Design [38.134929249388406]
Structure-based drug design (SBDD) aims to discover drug candidates by finding molecules that bind to a disease-related protein (targets)
We propose Reinforced Genetic Algorithm (RGA) that uses neural models to prioritize the profitable design steps and suppress random-walk behavior.
arXiv Detail & Related papers (2022-11-28T22:59:46Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.