PILOT: Equivariant diffusion for pocket conditioned de novo ligand generation with multi-objective guidance via importance sampling
- URL: http://arxiv.org/abs/2405.14925v1
- Date: Thu, 23 May 2024 17:58:28 GMT
- Title: PILOT: Equivariant diffusion for pocket conditioned de novo ligand generation with multi-objective guidance via importance sampling
- Authors: Julian Cremer, Tuan Le, Frank Noé, Djork-Arné Clevert, Kristof T. Schütt,
- Abstract summary: We propose an in-silico approach for the $textitde novo$ generation of 3D ligand structures using the equivariant diffusion model PILOT.
Its multi-objective-based importance sampling strategy is designed to direct the model towards molecules that exhibit desired characteristics.
We employ PILOT to generate novel metrics for unseen protein pockets from the Kinodata-3D dataset.
- Score: 8.619610909783441
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The generation of ligands that both are tailored to a given protein pocket and exhibit a range of desired chemical properties is a major challenge in structure-based drug design. Here, we propose an in-silico approach for the $\textit{de novo}$ generation of 3D ligand structures using the equivariant diffusion model PILOT, combining pocket conditioning with a large-scale pre-training and property guidance. Its multi-objective trajectory-based importance sampling strategy is designed to direct the model towards molecules that not only exhibit desired characteristics such as increased binding affinity for a given protein pocket but also maintains high synthetic accessibility. This ensures the practicality of sampled molecules, thus maximizing their potential for the drug discovery pipeline. PILOT significantly outperforms existing methods across various metrics on the common benchmark dataset CrossDocked2020. Moreover, we employ PILOT to generate novel ligands for unseen protein pockets from the Kinodata-3D dataset, which encompasses a substantial portion of the human kinome. The generated structures exhibit predicted $IC_{50}$ values indicative of potent biological activity, which highlights the potential of PILOT as a powerful tool for structure-based drug design.
Related papers
- Decomposed Direct Preference Optimization for Structure-Based Drug Design [47.561983733291804]
We propose DecompDPO, a structure-based optimization method to align diffusion models with pharmaceutical needs.
DecompDPO can be effectively used for two main purposes: fine-tuning pretrained diffusion models for molecule generation across various protein families, and molecular optimization given a specific protein subpocket after generation.
arXiv Detail & Related papers (2024-07-19T02:12:25Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - TAGMol: Target-Aware Gradient-guided Molecule Generation [19.977071499171903]
3D generative models have shown significant promise in structure-based drug design (SBDD)
We decouple the problem into molecular generation and property prediction.
The latter synergistically guides the diffusion sampling process, facilitating guided diffusion and resulting in the creation of meaningful molecules with the desired properties.
We call this guided molecular generation process as TAGMol.
arXiv Detail & Related papers (2024-06-03T14:43:54Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOpt is a structure-based molecular optimization method based on a controllable and diffusion model.
We show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines.
arXiv Detail & Related papers (2024-03-07T02:53:40Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - Target-aware Variational Auto-encoders for Ligand Generation with
Multimodal Protein Representation Learning [2.01243755755303]
We introduce TargetVAE, a target-aware auto-encoder that generates with high binding affinities to arbitrary protein targets.
This is the first effort to unify different representations of proteins into a single model that we name as Protein Multimodal Network (PMN)
arXiv Detail & Related papers (2023-08-02T12:08:17Z) - Learning Subpocket Prototypes for Generalizable Structure-based Drug
Design [17.61987808099346]
Deep generative models have achieved remarkable success in generating 3D molecules conditioned on the protein pocket.
Most existing methods consider molecular generation for protein pockets independently.
We propose a novel method DrugGPS for generalizable structure-based drug design.
arXiv Detail & Related papers (2023-05-22T13:49:49Z) - Structure-based Drug Design with Equivariant Diffusion Models [40.73626627266543]
We present DiffSBDD, an SE(3)-equivariant diffusion model that generates novel conditioned on protein pockets.
Our in silico experiments demonstrate that DiffSBDD captures the statistics of the ground truth data effectively.
These results support the assumption that diffusion models represent the complex distribution of structural data more accurately than previous methods.
arXiv Detail & Related papers (2022-10-24T15:51:21Z) - Tailoring Molecules for Protein Pockets: a Transformer-based Generative
Solution for Structured-based Drug Design [133.1268990638971]
De novo drug design based on the structure of a target protein can provide novel drug candidates.
We present a generative solution named TamGent that can directly generate candidate drugs from scratch for a given target.
arXiv Detail & Related papers (2022-08-30T09:32:39Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - De novo design of protein target specific scaffold-based Inhibitors via
Reinforcement Learning [8.210294479991118]
Current approaches to develop molecules for a target protein are intuition-driven, hampered by slow iterative design-test cycles.
We propose a novel framework, called 3D-MolGNN$_RL$, coupling reinforcement learning to a deep generative model based on 3D-Scaffold.
Our approach can serve as an interpretable artificial intelligence (AI) tool for lead optimization with optimized activity, potency, and biophysical properties.
arXiv Detail & Related papers (2022-05-21T00:47:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.