An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs
- URL: http://arxiv.org/abs/2205.10661v1
- Date: Sat, 21 May 2022 19:49:04 GMT
- Title: An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs
- Authors: Jiarui Zhang, Filip Ilievski, Kaixin Ma, Jonathan Francis and
Alessandro Oltramari
- Abstract summary: Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
- Score: 67.23285413610243
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Self-supervision based on the information extracted from large knowledge
graphs has been shown to improve the generalization of language models, in
zero-shot evaluation on various downstream language reasoning tasks. Since
these improvements are reported in aggregate, however, little is known about
(i) how to select the appropriate knowledge for solid performance across tasks,
(ii) how to combine this knowledge with neural language models, and (iii) how
these pairings affect granular task performance. In this paper, we study the
effect of knowledge sampling strategies and sizes that can be used to generate
synthetic data for adapting language models. We study the effect of different
synthetic datasets on language models with various architectures and sizes. The
resulting models are evaluated against four task properties: domain overlap,
answer similarity, vocabulary overlap, and answer length. Our experiments show
that encoder-decoder models benefit from more data to learn from, whereas
sampling strategies that balance across different aspects yield best
performance. Most of the improvement occurs on questions with short answers and
dissimilar answer candidates, which corresponds to the characteristics of the
data used for pre-training.
Related papers
- Likelihood as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
We show that likelihoods serve as an effective gauge for language model performance.
We propose two methods that use question likelihood as a gauge for selecting and constructing prompts that lead to better performance.
arXiv Detail & Related papers (2024-11-12T13:14:09Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - Influence Scores at Scale for Efficient Language Data Sampling [3.072340427031969]
"influence scores" are used to identify important subsets of data.
In this paper, we explore the applicability of influence scores in language classification tasks.
arXiv Detail & Related papers (2023-11-27T20:19:22Z) - Visualizing the Relationship Between Encoded Linguistic Information and
Task Performance [53.223789395577796]
We study the dynamic relationship between the encoded linguistic information and task performance from the viewpoint of Pareto Optimality.
We conduct experiments on two popular NLP tasks, i.e., machine translation and language modeling, and investigate the relationship between several kinds of linguistic information and task performances.
Our empirical findings suggest that some syntactic information is helpful for NLP tasks whereas encoding more syntactic information does not necessarily lead to better performance.
arXiv Detail & Related papers (2022-03-29T19:03:10Z) - How much pretraining data do language models need to learn syntax? [12.668478784932878]
Transformers-based pretrained language models achieve outstanding results in many well-known NLU benchmarks.
We study the impact of pretraining data size on the knowledge of the models using RoBERTa.
arXiv Detail & Related papers (2021-09-07T15:51:39Z) - Layer-wise Analysis of a Self-supervised Speech Representation Model [26.727775920272205]
Self-supervised learning approaches have been successful for pre-training speech representation models.
Not much has been studied about the type or extent of information encoded in the pre-trained representations themselves.
arXiv Detail & Related papers (2021-07-10T02:13:25Z) - Knowledge-driven Data Construction for Zero-shot Evaluation in
Commonsense Question Answering [80.60605604261416]
We propose a novel neuro-symbolic framework for zero-shot question answering across commonsense tasks.
We vary the set of language models, training regimes, knowledge sources, and data generation strategies, and measure their impact across tasks.
We show that, while an individual knowledge graph is better suited for specific tasks, a global knowledge graph brings consistent gains across different tasks.
arXiv Detail & Related papers (2020-11-07T22:52:21Z) - Learning from Context or Names? An Empirical Study on Neural Relation
Extraction [112.06614505580501]
We study the effect of two main information sources in text: textual context and entity mentions (names)
We propose an entity-masked contrastive pre-training framework for relation extraction (RE)
Our framework can improve the effectiveness and robustness of neural models in different RE scenarios.
arXiv Detail & Related papers (2020-10-05T11:21:59Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
Training of spoken language understanding (SLU) models often faces the problem of data scarcity.
We put forward a data augmentation method using pretrained language models to boost the variability and accuracy of generated utterances.
arXiv Detail & Related papers (2020-04-29T04:07:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.