Monitoring of Perception Systems: Deterministic, Probabilistic, and
Learning-based Fault Detection and Identification
- URL: http://arxiv.org/abs/2205.10906v1
- Date: Sun, 22 May 2022 19:08:45 GMT
- Title: Monitoring of Perception Systems: Deterministic, Probabilistic, and
Learning-based Fault Detection and Identification
- Authors: Pasquale Antonante, Heath Nilsen, Luca Carlone
- Abstract summary: We formalize the problem of runtime fault detection and identification in perception systems.
We provide a set of deterministic, probabilistic, and learning-based algorithms that use diagnostic graphs to perform fault detection and identification.
We conclude the paper with an experimental evaluation, which recreates several realistic failure modes in the LGSVL open-source autonomous driving simulator.
- Score: 21.25149064251918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates runtime monitoring of perception systems. Perception
is a critical component of high-integrity applications of robotics and
autonomous systems, such as self-driving cars. In these applications, failure
of perception systems may put human life at risk, and a broad adoption of these
technologies requires the development of methodologies to guarantee and monitor
safe operation. Despite the paramount importance of perception, currently there
is no formal approach for system-level perception monitoring. In this paper, we
formalize the problem of runtime fault detection and identification in
perception systems and present a framework to model diagnostic information
using a diagnostic graph. We then provide a set of deterministic,
probabilistic, and learning-based algorithms that use diagnostic graphs to
perform fault detection and identification. Moreover, we investigate
fundamental limits and provide deterministic and probabilistic guarantees on
the fault detection and identification results. We conclude the paper with an
extensive experimental evaluation, which recreates several realistic failure
modes in the LGSVL open-source autonomous driving simulator, and applies the
proposed system monitors to a state-of-the-art autonomous driving software
stack (Baidu's Apollo Auto). The results show that the proposed system monitors
outperform baselines, have the potential of preventing accidents in realistic
autonomous driving scenarios, and incur a negligible computational overhead.
Related papers
- Designing monitoring strategies for deployed machine learning
algorithms: navigating performativity through a causal lens [6.329470650220206]
The aim of this work is to highlight the relatively under-appreciated complexity of designing a monitoring strategy.
We consider an ML-based risk prediction algorithm for predicting unplanned readmissions.
Results from this case study emphasize the seemingly simple (and obvious) fact that not all monitoring systems are created equal.
arXiv Detail & Related papers (2023-11-20T00:15:16Z) - Detecting and Mitigating System-Level Anomalies of Vision-Based Controllers [7.095058159492494]
Vision-based controllers can make erroneous predictions when faced with novel or out-of-distribution inputs.
In this work, we introduce a run-time anomaly monitor to detect and mitigate such closed-loop, system-level failures.
We validate the proposed approach on an autonomous aircraft taxiing system that uses a vision-based controller for taxiing.
arXiv Detail & Related papers (2023-09-23T20:33:38Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
We demonstrate an end-to-end framework to improve the resilience of man-made systems to unforeseen events.
The framework is based on a physics-based digital twin model and three modules tasked with real-time fault diagnosis, prognostics and reconfiguration.
arXiv Detail & Related papers (2022-08-30T20:16:17Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
This paper addresses learning safe output feedback control laws from partial observations of expert demonstrations.
We first propose robust output control barrier functions (ROCBFs) as a means to guarantee safety.
We then formulate an optimization problem to learn ROCBFs from expert demonstrations that exhibit safe system behavior.
arXiv Detail & Related papers (2021-11-18T23:21:00Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - Adaptive Immunity for Software: Towards Autonomous Self-healing Systems [0.6117371161379209]
Self-healing software systems can detect, diagnose, and contain unanticipated problems at runtime.
Recent advances in machine learning may be learned by observing the system.
Artificial immune systems are particularly well-suited for building self-healing systems.
arXiv Detail & Related papers (2021-01-07T13:22:55Z) - Monitoring and Diagnosability of Perception Systems [21.25149064251918]
We propose a mathematical model for runtime monitoring and fault detection and identification in perception systems.
We demonstrate our monitoring system, dubbed PerSyS, in realistic simulations using the LGSVL self-driving simulator and the Apollo Auto autonomy software stack.
arXiv Detail & Related papers (2020-11-11T23:03:14Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Monitoring and Diagnosability of Perception Systems [21.25149064251918]
Perception is a critical component of high-integrity applications of robotics and autonomous systems, such as self-driving cars.
Despite the paramount importance of perception systems, there is no formal approach for system-level monitoring.
We propose a mathematical model for runtime monitoring and fault detection of perception systems.
arXiv Detail & Related papers (2020-05-24T18:09:46Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
Existing event detection systems are mostly learning-based and have achieved convincing performance when a large amount of training data is available.
In real-world scenarios, collecting sufficient labeled training data is expensive and sometimes impossible.
We propose a training-free monocular 3D event detection system for traffic surveillance.
arXiv Detail & Related papers (2020-02-01T04:42:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.