Monitoring and Diagnosability of Perception Systems
- URL: http://arxiv.org/abs/2005.11816v3
- Date: Mon, 16 Nov 2020 16:35:26 GMT
- Title: Monitoring and Diagnosability of Perception Systems
- Authors: Pasquale Antonante, David I. Spivak, Luca Carlone
- Abstract summary: Perception is a critical component of high-integrity applications of robotics and autonomous systems, such as self-driving cars.
Despite the paramount importance of perception systems, there is no formal approach for system-level monitoring.
We propose a mathematical model for runtime monitoring and fault detection of perception systems.
- Score: 21.25149064251918
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Perception is a critical component of high-integrity applications of robotics
and autonomous systems, such as self-driving cars. In these applications,
failure of perception systems may put human life at risk, and a broad adoption
of these technologies relies on the development of methodologies to guarantee
and monitor safe operation as well as detect and mitigate failures. Despite the
paramount importance of perception systems, currently there is no formal
approach for system-level monitoring. In this work, we propose a mathematical
model for runtime monitoring and fault detection of perception systems. Towards
this goal, we draw connections with the literature on self-diagnosability for
multiprocessor systems, and generalize it to (i) account for modules with
heterogeneous outputs, and (ii) add a temporal dimension to the problem, which
is crucial to model realistic perception systems where modules interact over
time. This contribution results in a graph-theoretic approach that, given a
perception system, is able to detect faults at runtime and allows computing an
upper-bound on the number of faulty modules that can be detected. Our second
contribution is to show that the proposed monitoring approach can be elegantly
described with the language of topos theory, which allows formulating
diagnosability over arbitrary time intervals.
Related papers
- A Data Mining-Based Dynamical Anomaly Detection Method for Integrating with an Advance Metering System [0.0]
Building operations consume 30% of total power consumption and contribute 26% of global power-related emissions.
This work investigates both supervised and unsupervised approaches to detect anomalies at the meter level.
This system is designed to provide real-time detection of anomalies at the meter level.
arXiv Detail & Related papers (2024-05-04T05:26:13Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Detecting and Mitigating System-Level Anomalies of Vision-Based Controllers [7.095058159492494]
Vision-based controllers can make erroneous predictions when faced with novel or out-of-distribution inputs.
In this work, we introduce a run-time anomaly monitor to detect and mitigate such closed-loop, system-level failures.
We validate the proposed approach on an autonomous aircraft taxiing system that uses a vision-based controller for taxiing.
arXiv Detail & Related papers (2023-09-23T20:33:38Z) - Don't Treat the Symptom, Find the Cause! Efficient
Artificial-Intelligence Methods for (Interactive) Debugging [0.0]
In the modern world, we are permanently using, leveraging, interacting with, and relying upon systems of ever higher sophistication.
In this thesis, we will give an introduction to the topic of model-based diagnosis, point out the major challenges in the field, and discuss a selection of approaches from our research addressing these issues.
arXiv Detail & Related papers (2023-06-22T12:44:49Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
We demonstrate an end-to-end framework to improve the resilience of man-made systems to unforeseen events.
The framework is based on a physics-based digital twin model and three modules tasked with real-time fault diagnosis, prognostics and reconfiguration.
arXiv Detail & Related papers (2022-08-30T20:16:17Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Monitoring of Perception Systems: Deterministic, Probabilistic, and
Learning-based Fault Detection and Identification [21.25149064251918]
We formalize the problem of runtime fault detection and identification in perception systems.
We provide a set of deterministic, probabilistic, and learning-based algorithms that use diagnostic graphs to perform fault detection and identification.
We conclude the paper with an experimental evaluation, which recreates several realistic failure modes in the LGSVL open-source autonomous driving simulator.
arXiv Detail & Related papers (2022-05-22T19:08:45Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - Monitoring and Diagnosability of Perception Systems [21.25149064251918]
We propose a mathematical model for runtime monitoring and fault detection and identification in perception systems.
We demonstrate our monitoring system, dubbed PerSyS, in realistic simulations using the LGSVL self-driving simulator and the Apollo Auto autonomy software stack.
arXiv Detail & Related papers (2020-11-11T23:03:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.