PyRelationAL: A Library for Active Learning Research and Development
- URL: http://arxiv.org/abs/2205.11117v1
- Date: Mon, 23 May 2022 08:21:21 GMT
- Title: PyRelationAL: A Library for Active Learning Research and Development
- Authors: Paul Scherer and Thomas Gaudelet and Alison Pouplin and Suraj M S and
Jyothish Soman and Lindsay Edwards and Jake P. Taylor-King
- Abstract summary: PyRelationAL is an open source library for active learning (AL) research.
It provides access to benchmark datasets and AL task configurations based on existing literature.
We perform experiments on the PyRelationAL collection of benchmark datasets and showcase the considerable economies that AL can provide.
- Score: 0.11545092788508224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In constrained real-world scenarios where it is challenging or costly to
generate data, disciplined methods for acquiring informative new data points
are of fundamental importance for the efficient training of machine learning
(ML) models. Active learning (AL) is a subfield of ML focused on the
development of methods to iteratively and economically acquire data through
strategically querying new data points that are the most useful for a
particular task. Here, we introduce PyRelationAL, an open source library for AL
research. We describe a modular toolkit that is compatible with diverse ML
frameworks (e.g. PyTorch, Scikit-Learn, TensorFlow, JAX). Furthermore, to help
accelerate research and development in the field, the library implements a
number of published methods and provides API access to wide-ranging benchmark
datasets and AL task configurations based on existing literature. The library
is supplemented by an expansive set of tutorials, demos, and documentation to
help users get started. We perform experiments on the PyRelationAL collection
of benchmark datasets and showcase the considerable economies that AL can
provide. PyRelationAL is maintained using modern software engineering practices
- with an inclusive contributor code of conduct - to promote long term library
quality and utilisation.
Related papers
- MALPOLON: A Framework for Deep Species Distribution Modeling [3.1457219084519004]
MALPOLON aims to facilitate training and inferences of deep species distribution models (deep-SDM)
It is written in Python and built upon the PyTorch library.
The framework is open-sourced on GitHub and PyPi.
arXiv Detail & Related papers (2024-09-26T17:45:10Z) - Deep Fast Machine Learning Utils: A Python Library for Streamlined Machine Learning Prototyping [0.0]
The Deep Fast Machine Learning Utils (DFMLU) library provides tools designed to automate and enhance aspects of machine learning processes.
DFMLU offers functionalities that support model development and data handling.
This manuscript presents an overview of DFMLU's functionalities, providing Python examples for each tool.
arXiv Detail & Related papers (2024-09-14T21:39:17Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
Real-world systems often incorporate a wide array of tools, making it impractical to input all tools into Large Language Models.
Existing tool retrieval methods primarily focus on semantic matching between user queries and tool descriptions.
We propose a novel modelagnostic COllaborative Learning-based Tool Retrieval approach, COLT, which captures not only the semantic similarities between user queries and tool descriptions but also takes into account the collaborative information of tools.
arXiv Detail & Related papers (2024-05-25T06:41:23Z) - PyPOTS: A Python Toolbox for Data Mining on Partially-Observed Time
Series [0.0]
PyPOTS is an open-source Python library dedicated to data mining and analysis on partially-observed time series.
It provides easy access to diverse algorithms categorized into four tasks: imputation, classification, clustering, and forecasting.
arXiv Detail & Related papers (2023-05-30T07:57:05Z) - SequeL: A Continual Learning Library in PyTorch and JAX [50.33956216274694]
SequeL is a library for Continual Learning that supports both PyTorch and JAX frameworks.
It provides a unified interface for a wide range of Continual Learning algorithms, including regularization-based approaches, replay-based approaches, and hybrid approaches.
We release SequeL as an open-source library, enabling researchers and developers to easily experiment and extend the library for their own purposes.
arXiv Detail & Related papers (2023-04-21T10:00:22Z) - problexity -- an open-source Python library for binary classification
problem complexity assessment [0.0]
The classification problem's complexity assessment is an essential element of many topics in the supervised learning domain.
The tools currently available for the academic community, which would enable the calculation of problem complexity measures, are available only as libraries of the C++ and R languages.
This paper describes the software module that allows for the estimation of 22 complexity measures for the Python language.
arXiv Detail & Related papers (2022-07-14T07:32:15Z) - pymdp: A Python library for active inference in discrete state spaces [52.85819390191516]
pymdp is an open-source package for simulating active inference in Python.
We provide the first open-source package for simulating active inference with POMDPs.
arXiv Detail & Related papers (2022-01-11T12:18:44Z) - Latte: Cross-framework Python Package for Evaluation of Latent-Based
Generative Models [65.51757376525798]
Latte is a Python library for evaluation of latent-based generative models.
Latte is compatible with both PyTorch and/Keras, and provides both functional and modular APIs.
arXiv Detail & Related papers (2021-12-20T16:00:28Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
Model-agnostic meta-learning (MAML) has become a popular research area.
Existing MAML algorithms rely on the episode' idea by sampling a few tasks and data points to update the meta-model at each iteration.
This paper proposes memory-based algorithms for MAML that converge with vanishing error.
arXiv Detail & Related papers (2021-06-09T08:47:58Z) - BOML: A Modularized Bilevel Optimization Library in Python for Meta
Learning [52.90643948602659]
BOML is a modularized optimization library that unifies several meta-learning algorithms into a common bilevel optimization framework.
It provides a hierarchical optimization pipeline together with a variety of iteration modules, which can be used to solve the mainstream categories of meta-learning methods.
arXiv Detail & Related papers (2020-09-28T14:21:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.