MALPOLON: A Framework for Deep Species Distribution Modeling
- URL: http://arxiv.org/abs/2409.18102v1
- Date: Thu, 26 Sep 2024 17:45:10 GMT
- Title: MALPOLON: A Framework for Deep Species Distribution Modeling
- Authors: Theo Larcher, Lukas Picek, Benjamin Deneu, Titouan Lorieul, Maximilien
Servajean, Alexis Joly
- Abstract summary: MALPOLON aims to facilitate training and inferences of deep species distribution models (deep-SDM)
It is written in Python and built upon the PyTorch library.
The framework is open-sourced on GitHub and PyPi.
- Score: 3.1457219084519004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes a deep-SDM framework, MALPOLON. Written in Python and
built upon the PyTorch library, this framework aims to facilitate training and
inferences of deep species distribution models (deep-SDM) and sharing for users
with only general Python language skills (e.g., modeling ecologists) who are
interested in testing deep learning approaches to build new SDMs. More advanced
users can also benefit from the framework's modularity to run more specific
experiments by overriding existing classes while taking advantage of
press-button examples to train neural networks on multiple classification tasks
using custom or provided raw and pre-processed datasets. The framework is
open-sourced on GitHub and PyPi along with extensive documentation and examples
of use in various scenarios. MALPOLON offers straightforward installation,
YAML-based configuration, parallel computing, multi-GPU utilization, baseline
and foundational models for benchmarking, and extensive
tutorials/documentation, aiming to enhance accessibility and performance
scalability for ecologists and researchers.
Related papers
- Deep Fast Machine Learning Utils: A Python Library for Streamlined Machine Learning Prototyping [0.0]
The Deep Fast Machine Learning Utils (DFMLU) library provides tools designed to automate and enhance aspects of machine learning processes.
DFMLU offers functionalities that support model development and data handling.
This manuscript presents an overview of DFMLU's functionalities, providing Python examples for each tool.
arXiv Detail & Related papers (2024-09-14T21:39:17Z) - pyvene: A Library for Understanding and Improving PyTorch Models via
Interventions [79.72930339711478]
$textbfpyvene$ is an open-source library that supports customizable interventions on a range of different PyTorch modules.
We show how $textbfpyvene$ provides a unified framework for performing interventions on neural models and sharing the intervened upon models with others.
arXiv Detail & Related papers (2024-03-12T16:46:54Z) - eipy: An Open-Source Python Package for Multi-modal Data Integration
using Heterogeneous Ensembles [3.465746303617158]
eipy is an open-source Python package for developing effective, multi-modal heterogeneous ensembles for classification.
eipy provides both a rigorous, and user-friendly framework for comparing and selecting the best-performing data integration and predictive modeling methods.
arXiv Detail & Related papers (2024-01-17T20:07:47Z) - PyPOTS: A Python Toolbox for Data Mining on Partially-Observed Time
Series [0.0]
PyPOTS is an open-source Python library dedicated to data mining and analysis on partially-observed time series.
It provides easy access to diverse algorithms categorized into four tasks: imputation, classification, clustering, and forecasting.
arXiv Detail & Related papers (2023-05-30T07:57:05Z) - PyRelationAL: a python library for active learning research and development [1.0061110876649197]
Active learning (AL) is a sub-field of ML focused on the development of methods to iteratively and economically acquire data.
Here, we introduce PyRelationAL, an open source library for AL research.
We describe a modular toolkit based around a two step design methodology for composing pool-based active learning strategies.
arXiv Detail & Related papers (2022-05-23T08:21:21Z) - Continual Inference: A Library for Efficient Online Inference with Deep
Neural Networks in PyTorch [97.03321382630975]
Continual Inference is a Python library for implementing Continual Inference Networks (CINs) in PyTorch.
We offer a comprehensive introduction to CINs and their implementation in practice, and provide best-practices and code examples for composing complex modules for modern Deep Learning.
arXiv Detail & Related papers (2022-04-07T13:03:09Z) - PyHHMM: A Python Library for Heterogeneous Hidden Markov Models [63.01207205641885]
PyHHMM is an object-oriented Python implementation of Heterogeneous-Hidden Markov Models (HHMMs)
PyHHMM emphasizes features not supported in similar available frameworks: a heterogeneous observation model, missing data inference, different model order selection criterias, and semi-supervised training.
PyHHMM relies on the numpy, scipy, scikit-learn, and seaborn Python packages, and is distributed under the Apache-2.0 License.
arXiv Detail & Related papers (2022-01-12T07:32:36Z) - pymdp: A Python library for active inference in discrete state spaces [52.85819390191516]
pymdp is an open-source package for simulating active inference in Python.
We provide the first open-source package for simulating active inference with POMDPs.
arXiv Detail & Related papers (2022-01-11T12:18:44Z) - Deeplite Neutrino: An End-to-End Framework for Constrained Deep Learning
Model Optimization [2.762905634186996]
We introduce a black-box framework, Deeplite Neutrino for production-ready optimization of deep learning models.
The framework is easy to include in an existing production pipeline and is available as a Python Package.
The framework is currently used in production and the results and testimonials from several clients are summarized.
arXiv Detail & Related papers (2021-01-11T18:07:45Z) - DIETERpy: a Python framework for The Dispatch and Investment Evaluation
Tool with Endogenous Renewables [62.997667081978825]
DIETER is an open-source power sector model designed to analyze future settings with very high shares of variable renewable energy sources.
It minimizes overall system costs, including fixed and variable costs of various generation, flexibility and sector coupling options.
We introduce DIETERpy that builds on the existing model version, written in the General Algebraic Modeling System (GAMS) and enhances it with a Python framework.
arXiv Detail & Related papers (2020-10-02T09:27:33Z) - MOGPTK: The Multi-Output Gaussian Process Toolkit [71.08576457371433]
We present MOGPTK, a Python package for multi-channel data modelling using Gaussian processes (GP)
The aim of this toolkit is to make multi-output GP (MOGP) models accessible to researchers, data scientists, and practitioners alike.
arXiv Detail & Related papers (2020-02-09T23:34:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.