PyRelationAL: a python library for active learning research and development
- URL: http://arxiv.org/abs/2205.11117v3
- Date: Mon, 11 Nov 2024 18:49:02 GMT
- Title: PyRelationAL: a python library for active learning research and development
- Authors: Paul Scherer, Alison Pouplin, Alice Del Vecchio, Suraj M S, Oliver Bolton, Jyothish Soman, Jake P. Taylor-King, Lindsay Edwards, Thomas Gaudelet,
- Abstract summary: Active learning (AL) is a sub-field of ML focused on the development of methods to iteratively and economically acquire data.
Here, we introduce PyRelationAL, an open source library for AL research.
We describe a modular toolkit based around a two step design methodology for composing pool-based active learning strategies.
- Score: 1.0061110876649197
- License:
- Abstract: Active learning (AL) is a sub-field of ML focused on the development of methods to iteratively and economically acquire data by strategically querying new data points that are the most useful for a particular task. Here, we introduce PyRelationAL, an open source library for AL research. We describe a modular toolkit based around a two step design methodology for composing pool-based active learning strategies applicable to both single-acquisition and batch-acquisition strategies. This framework allows for the mathematical and practical specification of a broad number of existing and novel strategies under a consistent programming model and abstraction. Furthermore, we incorporate datasets and active learning tasks applicable to them to simplify comparative evaluation and benchmarking, along with an initial group of benchmarks across datasets included in this library. The toolkit is compatible with existing ML frameworks. PyRelationAL is maintained using modern software engineering practices -- with an inclusive contributor code of conduct -- to promote long term library quality and utilisation. PyRelationAL is available under a permissive Apache licence on PyPi and at https://github.com/RelationRx/pyrelational.
Related papers
- MALPOLON: A Framework for Deep Species Distribution Modeling [3.1457219084519004]
MALPOLON aims to facilitate training and inferences of deep species distribution models (deep-SDM)
It is written in Python and built upon the PyTorch library.
The framework is open-sourced on GitHub and PyPi.
arXiv Detail & Related papers (2024-09-26T17:45:10Z) - Deep Fast Machine Learning Utils: A Python Library for Streamlined Machine Learning Prototyping [0.0]
The Deep Fast Machine Learning Utils (DFMLU) library provides tools designed to automate and enhance aspects of machine learning processes.
DFMLU offers functionalities that support model development and data handling.
This manuscript presents an overview of DFMLU's functionalities, providing Python examples for each tool.
arXiv Detail & Related papers (2024-09-14T21:39:17Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
Real-world systems often incorporate a wide array of tools, making it impractical to input all tools into Large Language Models.
Existing tool retrieval methods primarily focus on semantic matching between user queries and tool descriptions.
We propose a novel modelagnostic COllaborative Learning-based Tool Retrieval approach, COLT, which captures not only the semantic similarities between user queries and tool descriptions but also takes into account the collaborative information of tools.
arXiv Detail & Related papers (2024-05-25T06:41:23Z) - PyPOTS: A Python Toolbox for Data Mining on Partially-Observed Time
Series [0.0]
PyPOTS is an open-source Python library dedicated to data mining and analysis on partially-observed time series.
It provides easy access to diverse algorithms categorized into four tasks: imputation, classification, clustering, and forecasting.
arXiv Detail & Related papers (2023-05-30T07:57:05Z) - SequeL: A Continual Learning Library in PyTorch and JAX [50.33956216274694]
SequeL is a library for Continual Learning that supports both PyTorch and JAX frameworks.
It provides a unified interface for a wide range of Continual Learning algorithms, including regularization-based approaches, replay-based approaches, and hybrid approaches.
We release SequeL as an open-source library, enabling researchers and developers to easily experiment and extend the library for their own purposes.
arXiv Detail & Related papers (2023-04-21T10:00:22Z) - problexity -- an open-source Python library for binary classification
problem complexity assessment [0.0]
The classification problem's complexity assessment is an essential element of many topics in the supervised learning domain.
The tools currently available for the academic community, which would enable the calculation of problem complexity measures, are available only as libraries of the C++ and R languages.
This paper describes the software module that allows for the estimation of 22 complexity measures for the Python language.
arXiv Detail & Related papers (2022-07-14T07:32:15Z) - pymdp: A Python library for active inference in discrete state spaces [52.85819390191516]
pymdp is an open-source package for simulating active inference in Python.
We provide the first open-source package for simulating active inference with POMDPs.
arXiv Detail & Related papers (2022-01-11T12:18:44Z) - Latte: Cross-framework Python Package for Evaluation of Latent-Based
Generative Models [65.51757376525798]
Latte is a Python library for evaluation of latent-based generative models.
Latte is compatible with both PyTorch and/Keras, and provides both functional and modular APIs.
arXiv Detail & Related papers (2021-12-20T16:00:28Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
Model-agnostic meta-learning (MAML) has become a popular research area.
Existing MAML algorithms rely on the episode' idea by sampling a few tasks and data points to update the meta-model at each iteration.
This paper proposes memory-based algorithms for MAML that converge with vanishing error.
arXiv Detail & Related papers (2021-06-09T08:47:58Z) - BOML: A Modularized Bilevel Optimization Library in Python for Meta
Learning [52.90643948602659]
BOML is a modularized optimization library that unifies several meta-learning algorithms into a common bilevel optimization framework.
It provides a hierarchical optimization pipeline together with a variety of iteration modules, which can be used to solve the mainstream categories of meta-learning methods.
arXiv Detail & Related papers (2020-09-28T14:21:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.