論文の概要: What Makes Data-to-Text Generation Hard for Pretrained Language Models?
- arxiv url: http://arxiv.org/abs/2205.11505v1
- Date: Mon, 23 May 2022 17:58:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-24 15:48:08.931149
- Title: What Makes Data-to-Text Generation Hard for Pretrained Language Models?
- Title(参考訳): 事前訓練された言語モデルでデータ-テキスト生成が困難になる理由
- Authors: Moniba Keymanesh, Adrian Benton, Mark Dredze
- Abstract要約: 構造化された事実や関係(D2T)の自然言語記述を表現することで、構造化された知識リポジトリのアクセシビリティが向上する。
従来の研究は、タスク固有のトレーニングデータを大幅に微調整した後、事前学習された言語モデル(PLM)が、このタスクに対して驚くほどうまく機能していることを示している。
DARTマルチドメインD2Tデータセット上で、微調整と自動回帰PLMの両方について実証的研究を行う。
- 参考スコア(独自算出の注目度): 17.07349898176898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Expressing natural language descriptions of structured facts or relations --
data-to-text generation (D2T) -- increases the accessibility of structured
knowledge repositories. Previous work shows that pre-trained language
models(PLMs) perform remarkably well on this task after fine-tuning on a
significant amount of task-specific training data. On the other hand, while
auto-regressive PLMs can generalize from a few task examples, their efficacy at
D2T is largely unexplored. Furthermore, we have an incomplete understanding of
the limits of PLMs on D2T.
In this work, we conduct an empirical study of both fine-tuned and
auto-regressive PLMs on the DART multi-domain D2T dataset. We consider their
performance as a function of the amount of task-specific data and how these
data are incorporated into the models: zero and few-shot learning, and
fine-tuning of model weights. In addition, we probe the limits of PLMs by
measuring performance on subsets of the evaluation data: novel predicates and
abstractive test examples. To improve the performance on these subsets, we
investigate two techniques: providing predicate descriptions in the context and
re-ranking generated candidates by information reflected in the source.
Finally, we conduct a human evaluation of model errors and show that D2T
generation tasks would benefit from datasets with more careful manual curation.
- Abstract(参考訳): 構造化された事実や関係(データからテキストへの生成(D2T))を自然言語で記述することで、構造化された知識リポジトリのアクセシビリティが向上する。
従来の研究は、タスク固有のトレーニングデータを大幅に微調整した後、事前学習された言語モデル(PLM)が、このタスクに対して驚くほどうまく機能していることを示している。
一方、自己回帰型PLMはいくつかのタスク例から一般化できるが、D2Tでの有効性はほとんど探索されていない。
さらに、D2T 上の PLM の極限を不完全に理解する。
本研究では、DARTマルチドメインD2Tデータセット上で、微調整と自動回帰PLMの両方について実証的研究を行う。
タスク固有のデータの量と、それらのデータがモデルにどのように組み込まれているかの関数として、それらのパフォーマンスを考察する。
さらに,評価データのサブセット上での性能を計測することで,PLMの限界を探索する:新しい述語と抽象的なテスト例。
これらの部分集合の性能を向上させるために、文脈における述語記述の提供と、ソースに反映された情報による生成候補の再ランク付けという2つの手法について検討する。
最後に,モデルエラーのヒューマン評価を行い,d2t生成タスクが,より注意深い手動キュレーションによるデータセットの恩恵を受けることを示す。
関連論文リスト
- Improving General Text Embedding Model: Tackling Task Conflict and Data Imbalance through Model Merging [33.23758947497205]
高度な埋め込みモデルは、通常、大規模マルチタスクデータと複数のタスクをまたいだ共同トレーニングを用いて開発される。
これらの課題を克服するために、独立に訓練されたモデルを組み合わせて勾配の衝突を緩和し、データ分散のバランスをとるモデルマージングについて検討する。
本稿では,勾配降下を用いたタスクベクトル空間内の最適モデル組合せを効率的に探索する新たな手法であるSelf Positioningを提案する。
論文 参考訳(メタデータ) (2024-10-19T08:39:21Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Automated Data Visualization from Natural Language via Large Language Models: An Exploratory Study [41.84915013818794]
The Natural Language to Visualization (NL2Vis) taskは、自然言語記述を接地テーブルの視覚表現に変換することを目的としている。
多くのディープラーニングベースのアプローチがNL2Vis向けに開発されているが、目に見えないデータベースや複数のテーブルにまたがるデータの視覚化には課題が続いている。
本稿では,Large Language Models (LLMs) の顕著な生成能力からインスピレーションを得て,その可能性を評価するための実証的研究を行う。
論文 参考訳(メタデータ) (2024-04-26T03:25:35Z) - Triples-to-isiXhosa (T2X): Addressing the Challenges of Low-Resource
Agglutinative Data-to-Text Generation [9.80836683456026]
我々は,低リソースかつ凝集性の高いisiXhosaのデータ・トゥ・テキストに取り組む。
我々はWebNLGのサブセットに基づいた新しいデータセットであるTriples-to-isiXhosa (T2X)を紹介する。
本研究では,T2X の評価フレームワークを開発し,データ記述の精度を計測する。
論文 参考訳(メタデータ) (2024-03-12T11:53:27Z) - Synthetic Data Generation in Low-Resource Settings via Fine-Tuning of
Large Language Models [15.991777903345575]
大規模な言語モデルは、比較的少ないラベル付き例で下流タスクを一般化することができる。
あるいは、ラベル付きサンプルを十分に微調整すれば、より小さなモデルで特定のタスクを解くことができる。
我々は、より小さなモデルの下流性能を改善するために、微調整教師LEMを用いた微調整訓練データの合成データ生成について検討した。
論文 参考訳(メタデータ) (2023-10-02T11:49:05Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) は、トランスフォーマーのバックボーンを組み込んだ拡散に基づく手法であり、生成計画とデータ合成のための素早い学習を行う。
生成計画において、textscMTDiffはMeta-World上の50のタスクとMaze2D上の8のマップで最先端のアルゴリズムより優れています。
論文 参考訳(メタデータ) (2023-05-29T05:20:38Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5シリーズのモデルは、様々なNLPタスクにまたがる顕著な少数ショットとゼロショットの能力を示している。
本稿では,2段階のアプローチを取り入れたAnnoLLMを提案する。
我々はAnnoLLMを用いた対話型情報検索データセットを構築した。
論文 参考訳(メタデータ) (2023-03-29T17:03:21Z) - When Can Models Learn From Explanations? A Formal Framework for
Understanding the Roles of Explanation Data [84.87772675171412]
個々のデータポイントの説明がモデリング性能を向上させる状況について検討する。
e-SNLI、TACRED、SemEvalの3つの既存のデータセットを使って説明します。
論文 参考訳(メタデータ) (2021-02-03T18:57:08Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
線形化ラベル付き文に基づいて訓練された言語モデルを用いた新しい拡張手法を提案する。
本手法は, 教師付き設定と半教師付き設定の両方に適用可能である。
論文 参考訳(メタデータ) (2020-11-03T07:49:15Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。