論文の概要: Towards Opening the Black Box of Neural Machine Translation: Source and
Target Interpretations of the Transformer
- arxiv url: http://arxiv.org/abs/2205.11631v1
- Date: Mon, 23 May 2022 20:59:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-25 13:51:25.969151
- Title: Towards Opening the Black Box of Neural Machine Translation: Source and
Target Interpretations of the Transformer
- Title(参考訳): ニューラルマシン翻訳のブラックボックスオープンに向けて : トランスフォーマーのソースとターゲット解釈
- Authors: Javier Ferrando, Gerard I. G\'allego, Belen Alastruey, Carlos
Escolano, Marta R. Costa-juss\`a
- Abstract要約: ニューラルネットワーク翻訳(NMT)では、各トークン予測はソース文とターゲットプレフィックスに条件付けされる。
NMTにおける解釈可能性に関するこれまでの研究は、原文トークンの属性のみに焦点を当ててきた。
本稿では,完全な入力トークン属性を追跡する解釈可能性手法を提案する。
- 参考スコア(独自算出の注目度): 1.8594711725515678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Neural Machine Translation (NMT), each token prediction is conditioned on
the source sentence and the target prefix (what has been previously translated
at a decoding step). However, previous work on interpretability in NMT has
focused solely on source sentence tokens attributions. Therefore, we lack a
full understanding of the influences of every input token (source sentence and
target prefix) in the model predictions. In this work, we propose an
interpretability method that tracks complete input token attributions. Our
method, which can be extended to any encoder-decoder Transformer-based model,
allows us to better comprehend the inner workings of current NMT models. We
apply the proposed method to both bilingual and multilingual Transformers and
present insights into their behaviour.
- Abstract(参考訳): ニューラルマシン翻訳(nmt)では、各トークン予測は、ソース文とターゲットプレフィックス(以前に復号化ステップで翻訳されたもの)で条件付けされる。
しかし、NMTにおける解釈可能性に関するこれまでの研究は、ソース文トークンの属性のみに焦点を当ててきた。
したがって、モデル予測における全ての入力トークン(ソース文とターゲットプレフィックス)の影響について完全には理解できない。
本研究では,完全な入力トークン帰属を追跡する解釈可能性手法を提案する。
提案手法は,任意のエンコーダデコーダトランスフォーマーモデルに拡張可能であり,現在のNTTモデルの内部動作をよりよく理解することができる。
提案手法をバイリンガルトランスフォーマーと多言語トランスフォーマーの両方に適用し,その動作について考察する。
関連論文リスト
- Learning Homographic Disambiguation Representation for Neural Machine
Translation [20.242134720005467]
ニューラル・マシン・トランスレーション(NMT)において、同じ綴りだが異なる意味を持つ単語であるホモグラフは依然として困難である
我々は、潜伏空間におけるNMT問題に取り組むための新しいアプローチを提案する。
まず、自然言語推論(NLI)タスクで普遍的な文表現を学ぶために、エンコーダ(別名ホモグラフィックエンコーダ)を訓練する。
さらに、ホモグラフベースの合成WordNetを用いてエンコーダを微調整し、文から単語集合表現を学習する。
論文 参考訳(メタデータ) (2023-04-12T13:42:59Z) - Transformer Feed-Forward Layers Build Predictions by Promoting Concepts
in the Vocabulary Space [49.029910567673824]
トランスフォーマーベース言語モデル(LM)は現代のNLPの中核にあるが、内部予測構築プロセスは不透明であり、ほとんど理解されていない。
我々は、フィードフォワードネットワーク(FFN)層の動作をリバースエンジニアリングすることで、この基盤となる予測プロセスの公開に向けて大きな一歩を踏み出した。
論文 参考訳(メタデータ) (2022-03-28T12:26:00Z) - Confidence Based Bidirectional Global Context Aware Training Framework
for Neural Machine Translation [74.99653288574892]
我々は、ニューラルネットワーク翻訳(NMT)のための信頼に基づく双方向グローバルコンテキスト認識(CBBGCA)トレーニングフレームワークを提案する。
提案したCBBGCAトレーニングフレームワークは,3つの大規模翻訳データセットにおいて,NMTモデルを+1.02,+1.30,+0.57 BLEUスコアで大幅に改善する。
論文 参考訳(メタデータ) (2022-02-28T10:24:22Z) - Exploring Unsupervised Pretraining Objectives for Machine Translation [99.5441395624651]
教師なし言語間事前訓練は、ニューラルマシン翻訳(NMT)の強力な結果を得た
ほとんどのアプローチは、入力の一部をマスキングしてデコーダで再構成することで、シーケンス・ツー・シーケンスアーキテクチャにマスク付き言語モデリング(MLM)を適用する。
マスキングと、実際の(完全な)文に似た入力を生成する代替目的を、文脈に基づいて単語を並べ替えて置き換えることにより比較する。
論文 参考訳(メタデータ) (2021-06-10T10:18:23Z) - Source and Target Bidirectional Knowledge Distillation for End-to-end
Speech Translation [88.78138830698173]
外部テキストベースNMTモデルからのシーケンスレベルの知識蒸留(SeqKD)に注目した。
E2E-STモデルを訓練し、パラフレーズ転写を1つのデコーダで補助タスクとして予測する。
論文 参考訳(メタデータ) (2021-04-13T19:00:51Z) - Token Drop mechanism for Neural Machine Translation [12.666468105300002]
NMTモデルの一般化とオーバーフィッティングを回避するため,Token Dropを提案する。
単語ドロップアウトと同様に、ドロップトークンを単語に0をセットするのではなく、特別なトークンに置き換える。
論文 参考訳(メタデータ) (2020-10-21T14:02:27Z) - Universal Vector Neural Machine Translation With Effective Attention [0.0]
本稿では,エンコーダ-デコーダモデルに基づくニューラルネットワーク翻訳の特異モデルを提案する。
我々は、複数の言語を予測できる中立/ユニバーサルモデル表現を導入する。
論文 参考訳(メタデータ) (2020-06-09T01:13:57Z) - Explicit Reordering for Neural Machine Translation [50.70683739103066]
Transformer-based neural machine translation (NMT)では、位置符号化機構は、自己アテンションネットワークが順序依存でソース表現を学習するのに役立つ。
本研究では,トランスフォーマーベースのNMTに対して,このリオーダ情報を明示的にモデル化する新しいリオーダ手法を提案する。
WMT14, WAT ASPEC日本語訳, WMT17中国語訳の実証結果から, 提案手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-04-08T05:28:46Z) - Learning Contextualized Sentence Representations for Document-Level
Neural Machine Translation [59.191079800436114]
文書レベルの機械翻訳は、文間の依存関係をソース文の翻訳に組み込む。
本稿では,ニューラルマシン翻訳(NMT)を訓練し,文のターゲット翻訳と周辺文の双方を予測することによって,文間の依存関係をモデル化するフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-30T03:38:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。