Compressing Deep Graph Neural Networks via Adversarial Knowledge
Distillation
- URL: http://arxiv.org/abs/2205.11678v1
- Date: Tue, 24 May 2022 00:04:43 GMT
- Title: Compressing Deep Graph Neural Networks via Adversarial Knowledge
Distillation
- Authors: Huarui He, Jie Wang, Zhanqiu Zhang, Feng Wu
- Abstract summary: We propose a novel Adversarial Knowledge Distillation framework for graph models named GraphAKD.
The discriminator distinguishes between teacher knowledge and what the student inherits, while the student GNN works as a generator and aims to fool the discriminator.
The results imply that GraphAKD can precisely transfer knowledge from a complicated teacher GNN to a compact student GNN.
- Score: 41.00398052556643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep graph neural networks (GNNs) have been shown to be expressive for
modeling graph-structured data. Nevertheless, the over-stacked architecture of
deep graph models makes it difficult to deploy and rapidly test on mobile or
embedded systems. To compress over-stacked GNNs, knowledge distillation via a
teacher-student architecture turns out to be an effective technique, where the
key step is to measure the discrepancy between teacher and student networks
with predefined distance functions. However, using the same distance for graphs
of various structures may be unfit, and the optimal distance formulation is
hard to determine. To tackle these problems, we propose a novel Adversarial
Knowledge Distillation framework for graph models named GraphAKD, which
adversarially trains a discriminator and a generator to adaptively detect and
decrease the discrepancy. Specifically, noticing that the well-captured
inter-node and inter-class correlations favor the success of deep GNNs, we
propose to criticize the inherited knowledge from node-level and class-level
views with a trainable discriminator. The discriminator distinguishes between
teacher knowledge and what the student inherits, while the student GNN works as
a generator and aims to fool the discriminator. To our best knowledge, GraphAKD
is the first to introduce adversarial training to knowledge distillation in
graph domains. Experiments on node-level and graph-level classification
benchmarks demonstrate that GraphAKD improves the student performance by a
large margin. The results imply that GraphAKD can precisely transfer knowledge
from a complicated teacher GNN to a compact student GNN.
Related papers
- Hypergraph-enhanced Dual Semi-supervised Graph Classification [14.339207883093204]
We propose a Hypergraph-Enhanced DuAL framework named HEAL for semi-supervised graph classification.
To better explore the higher-order relationships among nodes, we design a hypergraph structure learning to adaptively learn complex node dependencies.
Based on the learned hypergraph, we introduce a line graph to capture the interaction between hyperedges.
arXiv Detail & Related papers (2024-05-08T02:44:13Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - Isomorphic-Consistent Variational Graph Auto-Encoders for Multi-Level
Graph Representation Learning [9.039193854524763]
We propose the Isomorphic-Consistent VGAE (IsoC-VGAE) for task-agnostic graph representation learning.
We first devise a decoding scheme to provide a theoretical guarantee of keeping the isomorphic consistency.
We then propose the Inverse Graph Neural Network (Inv-GNN) decoder as its intuitive realization.
arXiv Detail & Related papers (2023-12-09T10:16:53Z) - T2-GNN: Graph Neural Networks for Graphs with Incomplete Features and
Structure via Teacher-Student Distillation [65.43245616105052]
Graph Neural Networks (GNNs) have been a prevailing technique for tackling various analysis tasks on graph data.
In this paper, we propose a general GNN framework based on teacher-student distillation to improve the performance of GNNs on incomplete graphs.
arXiv Detail & Related papers (2022-12-24T13:49:44Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Graph Neural Network with Curriculum Learning for Imbalanced Node
Classification [21.085314408929058]
Graph Neural Network (GNN) is an emerging technique for graph-based learning tasks such as node classification.
In this work, we reveal the vulnerability of GNN to the imbalance of node labels.
We propose a novel graph neural network framework with curriculum learning (GNN-CL) consisting of two modules.
arXiv Detail & Related papers (2022-02-05T10:46:11Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.