Performance Heterogeneity in Graph Neural Networks: Lessons for Architecture Design and Preprocessing
- URL: http://arxiv.org/abs/2503.00547v1
- Date: Sat, 01 Mar 2025 16:18:07 GMT
- Title: Performance Heterogeneity in Graph Neural Networks: Lessons for Architecture Design and Preprocessing
- Authors: Lukas Fesser, Melanie Weber,
- Abstract summary: Graph Neural Networks have emerged as the most popular architecture for graph-level learning.<n>We show that good performance in practice requires careful model design.<n>We propose a selective approach, which only targets graphs whose individual performance benefits from rewiring.
- Score: 1.1126342180866644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks have emerged as the most popular architecture for graph-level learning, including graph classification and regression tasks, which frequently arise in areas such as biochemistry and drug discovery. Achieving good performance in practice requires careful model design. Due to gaps in our understanding of the relationship between model and data characteristics, this often requires manual architecture and hyperparameter tuning. This is particularly pronounced in graph-level tasks, due to much higher variation in the input data than in node-level tasks. To work towards closing these gaps, we begin with a systematic analysis of individual performance in graph-level tasks. Our results establish significant performance heterogeneity in both message-passing and transformer-based architectures. We then investigate the interplay of model and data characteristics as drivers of the observed heterogeneity. Our results suggest that graph topology alone cannot explain heterogeneity. Using the Tree Mover's Distance, which jointly evaluates topological and feature information, we establish a link between class-distance ratios and performance heterogeneity in graph classification. These insights motivate model and data preprocessing choices that account for heterogeneity between graphs. We propose a selective rewiring approach, which only targets graphs whose individual performance benefits from rewiring. We further show that the optimal network depth depends on the graph's spectrum, which motivates a heuristic for choosing the number of GNN layers. Our experiments demonstrate the utility of both design choices in practice.
Related papers
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)<n>This framework provides a standardized setting to evaluate GNNs across diverse datasets.<n>We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
We propose an innovative Graph Neural Network (GNN) architecture that integrates a Top-m attention mechanism aggregation component and a neighborhood aggregation component.
To assess the effectiveness of our proposed model, we have applied it to citation sentiment prediction, a novel task previously unexplored in the GNN field.
arXiv Detail & Related papers (2024-11-23T05:31:25Z) - Learning From Graph-Structured Data: Addressing Design Issues and Exploring Practical Applications in Graph Representation Learning [2.492884361833709]
We present an exhaustive review of the latest advancements in graph representation learning and Graph Neural Networks (GNNs)
GNNs, tailored to handle graph-structured data, excel in deriving insights and predictions from intricate relational information.
Our work delves into the capabilities of GNNs, examining their foundational designs and their application in addressing real-world challenges.
arXiv Detail & Related papers (2024-11-09T19:10:33Z) - Data Augmentation in Graph Neural Networks: The Role of Generated Synthetic Graphs [0.24999074238880487]
This study explores using generated graphs for data augmentation.
It compares the performance of combining generated graphs with real graphs, and examining the effect of different quantities of generated graphs on graph classification tasks.
Our results introduce a new approach to graph data augmentation, ensuring consistent labels and enhancing classification performance.
arXiv Detail & Related papers (2024-07-20T06:05:26Z) - Permutation Equivariant Graph Framelets for Heterophilous Graph Learning [6.679929638714752]
We develop a new way to implement multi-scale extraction via constructing Haar-type graph framelets.
We show that our model can achieve the best performance on certain datasets of heterophilous graphs.
arXiv Detail & Related papers (2023-06-07T09:05:56Z) - Towards Relation-centered Pooling and Convolution for Heterogeneous
Graph Learning Networks [11.421162988355146]
Heterogeneous graph neural network has unleashed great potential on graph representation learning.
We design a relation-centered Pooling and Convolution for Heterogeneous Graph learning Network, namely PC-HGN, to enable relation-specific sampling and cross-relation convolutions.
We evaluate the performance of the proposed model by comparing with state-of-the-art graph learning models on three different real-world datasets.
arXiv Detail & Related papers (2022-10-31T08:43:32Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
We provide a comprehensive review of graph neural networks (GNNs) for heterophilic graphs.
Specifically, we propose a systematic taxonomy that essentially governs existing heterophilic GNN models.
We discuss the correlation between graph heterophily and various graph research domains, aiming to facilitate the development of more effective GNNs.
arXiv Detail & Related papers (2022-02-14T23:07:47Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Improving Graph Neural Networks with Simple Architecture Design [7.057970273958933]
We introduce several key design strategies for graph neural networks.
We present a simple and shallow model, Feature Selection Graph Neural Network (FSGNN)
We show that the proposed model outperforms other state of the art GNN models and achieves up to 64% improvements in accuracy on node classification tasks.
arXiv Detail & Related papers (2021-05-17T06:46:01Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.