Functional Network: A Novel Framework for Interpretability of Deep
Neural Networks
- URL: http://arxiv.org/abs/2205.11702v1
- Date: Tue, 24 May 2022 01:17:36 GMT
- Title: Functional Network: A Novel Framework for Interpretability of Deep
Neural Networks
- Authors: Ben Zhang, Zhetong Dong, Junsong Zhang, Hongwei Lin
- Abstract summary: We propose a novel framework for interpretability of deep neural networks, that is, the functional network.
In our experiments, the mechanisms of regularization methods, namely, batch normalization and dropout, are revealed.
- Score: 2.641939670320645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The layered structure of deep neural networks hinders the use of numerous
analysis tools and thus the development of its interpretability. Inspired by
the success of functional brain networks, we propose a novel framework for
interpretability of deep neural networks, that is, the functional network. We
construct the functional network of fully connected networks and explore its
small-worldness. In our experiments, the mechanisms of regularization methods,
namely, batch normalization and dropout, are revealed using graph theoretical
analysis and topological data analysis. Our empirical analysis shows the
following: (1) Batch normalization enhances model performance by increasing the
global e ciency and the number of loops but reduces adversarial robustness by
lowering the fault tolerance. (2) Dropout improves generalization and
robustness of models by improving the functional specialization and fault
tolerance. (3) The models with dierent regularizations can be clustered
correctly according to their functional topological dierences, re ecting the
great potential of the functional network and topological data analysis in
interpretability.
Related papers
- Interpreting Neural Networks through Mahalanobis Distance [0.0]
This paper introduces a theoretical framework that connects neural network linear layers with the Mahalanobis distance.
Although this work is theoretical and does not include empirical data, the proposed distance-based interpretation has the potential to enhance model robustness, improve generalization, and provide more intuitive explanations of neural network decisions.
arXiv Detail & Related papers (2024-10-25T07:21:44Z) - Neural Scaling Laws of Deep ReLU and Deep Operator Network: A Theoretical Study [8.183509993010983]
We study the neural scaling laws for deep operator networks using the Chen and Chen style architecture.
We quantify the neural scaling laws by analyzing its approximation and generalization errors.
Our results offer a partial explanation of the neural scaling laws in operator learning and provide a theoretical foundation for their applications.
arXiv Detail & Related papers (2024-10-01T03:06:55Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Feature Contamination: Neural Networks Learn Uncorrelated Features and Fail to Generalize [5.642322814965062]
Learning representations that generalize under distribution shifts is critical for building robust machine learning models.
We show that even allowing a neural network to explicitly fit the representations obtained from a teacher network that can generalize out-of-distribution is insufficient for the generalization of the student network.
arXiv Detail & Related papers (2024-06-05T15:04:27Z) - Operator Learning Meets Numerical Analysis: Improving Neural Networks
through Iterative Methods [2.226971382808806]
We develop a theoretical framework grounded in iterative methods for operator equations.
We demonstrate that popular architectures, such as diffusion models and AlphaFold, inherently employ iterative operator learning.
Our work aims to enhance the understanding of deep learning by merging insights from numerical analysis.
arXiv Detail & Related papers (2023-10-02T20:25:36Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
We show that the generalization abilities of model-based networks for sparse recovery outperform those of regular ReLU networks.
We derive practical design rules that allow to construct model-based networks with guaranteed high generalization.
arXiv Detail & Related papers (2023-04-19T16:39:44Z) - Analytic Insights into Structure and Rank of Neural Network Hessian Maps [32.90143789616052]
Hessian of a neural network captures parameter interactions through second-order derivatives of the loss.
We develop theoretical tools to analyze the range of the Hessian map, providing us with a precise understanding of its rank deficiency.
This yields exact formulas and tight upper bounds for the Hessian rank of deep linear networks.
arXiv Detail & Related papers (2021-06-30T17:29:58Z) - Formalizing Generalization and Robustness of Neural Networks to Weight
Perturbations [58.731070632586594]
We provide the first formal analysis for feed-forward neural networks with non-negative monotone activation functions against weight perturbations.
We also design a new theory-driven loss function for training generalizable and robust neural networks against weight perturbations.
arXiv Detail & Related papers (2021-03-03T06:17:03Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.