ENS-t-SNE: Embedding Neighborhoods Simultaneously t-SNE
- URL: http://arxiv.org/abs/2205.11720v3
- Date: Sat, 30 Mar 2024 15:27:22 GMT
- Title: ENS-t-SNE: Embedding Neighborhoods Simultaneously t-SNE
- Authors: Jacob Miller, Vahan Huroyan, Raymundo Navarrete, Md Iqbal Hossain, Stephen Kobourov,
- Abstract summary: ENS-t-SNE is an algorithm for Embedding Neighborhoods Simultaneously that generalizes the t-Stochastic Neighborhood Embedding approach.
By using different viewpoints in ENS-t-SNE's 3D embedding, one can visualize different types of clusters within the same high-dimensional dataset.
- Score: 1.9573380763700716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When visualizing a high-dimensional dataset, dimension reduction techniques are commonly employed which provide a single 2-dimensional view of the data. We describe ENS-t-SNE: an algorithm for Embedding Neighborhoods Simultaneously that generalizes the t-Stochastic Neighborhood Embedding approach. By using different viewpoints in ENS-t-SNE's 3D embedding, one can visualize different types of clusters within the same high-dimensional dataset. This enables the viewer to see and keep track of the different types of clusters, which is harder to do when providing multiple 2D embeddings, where corresponding points cannot be easily identified. We illustrate the utility of ENS-t-SNE with real-world applications and provide an extensive quantitative evaluation with datasets of different types and sizes.
Related papers
- What Matters in Range View 3D Object Detection [15.147558647138629]
Lidar-based perception pipelines rely on 3D object detection models to interpret complex scenes.
We achieve state-of-the-art amongst range-view 3D object detection models without using multiple techniques proposed in past range-view literature.
arXiv Detail & Related papers (2024-07-23T18:42:37Z) - General Line Coordinates in 3D [2.9465623430708905]
Interpretable interactive visual pattern discovery in 3D visualization is a promising way to advance machine learning.
It is conducted in 3D General Line Coordinates (GLC) visualization space, which preserves all n-D information in 3D.
arXiv Detail & Related papers (2024-03-17T17:42:20Z) - Dual-Perspective Knowledge Enrichment for Semi-Supervised 3D Object
Detection [55.210991151015534]
We present a novel Dual-Perspective Knowledge Enrichment approach named DPKE for semi-supervised 3D object detection.
Our DPKE enriches the knowledge of limited training data, particularly unlabeled data, from two perspectives: data-perspective and feature-perspective.
arXiv Detail & Related papers (2024-01-10T08:56:07Z) - PointOcc: Cylindrical Tri-Perspective View for Point-based 3D Semantic
Occupancy Prediction [72.75478398447396]
We propose a cylindrical tri-perspective view to represent point clouds effectively and comprehensively.
Considering the distance distribution of LiDAR point clouds, we construct the tri-perspective view in the cylindrical coordinate system.
We employ spatial group pooling to maintain structural details during projection and adopt 2D backbones to efficiently process each TPV plane.
arXiv Detail & Related papers (2023-08-31T17:57:17Z) - MVTN: Learning Multi-View Transformations for 3D Understanding [60.15214023270087]
We introduce the Multi-View Transformation Network (MVTN), which uses differentiable rendering to determine optimal view-points for 3D shape recognition.
MVTN can be trained end-to-end with any multi-view network for 3D shape recognition.
Our approach demonstrates state-of-the-art performance in 3D classification and shape retrieval on several benchmarks.
arXiv Detail & Related papers (2022-12-27T12:09:16Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - UnProjection: Leveraging Inverse-Projections for Visual Analytics of
High-Dimensional Data [63.74032987144699]
We present NNInv, a deep learning technique with the ability to approximate the inverse of any projection or mapping.
NNInv learns to reconstruct high-dimensional data from any arbitrary point on a 2D projection space, giving users the ability to interact with the learned high-dimensional representation in a visual analytics system.
arXiv Detail & Related papers (2021-11-02T17:11:57Z) - Multi-view Data Visualisation via Manifold Learning [0.03222802562733786]
This manuscript proposes extensions of Student's t-distributed SNE, LLE and ISOMAP, to allow for dimensionality reduction and visualisation of multi-view data.
We show that by incorporating the low-dimensional embeddings obtained via the multi-view manifold learning approaches into the K-means algorithm, clusters of the samples are accurately identified.
arXiv Detail & Related papers (2021-01-17T19:54:36Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
We present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks.
The dataset has been point-wisely annotated with both hierarchical and instance-based labels.
We formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies.
arXiv Detail & Related papers (2020-08-11T19:10:32Z) - OccuSeg: Occupancy-aware 3D Instance Segmentation [39.71517989569514]
"3D occupancy size" is the number of voxels occupied by each instance.
"OccuSeg" is an occupancy-aware 3D instance segmentation scheme.
"State-of-the-art performance" on 3 real-world datasets.
arXiv Detail & Related papers (2020-03-14T02:48:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.