General Line Coordinates in 3D
- URL: http://arxiv.org/abs/2403.13014v1
- Date: Sun, 17 Mar 2024 17:42:20 GMT
- Title: General Line Coordinates in 3D
- Authors: Joshua Martinez, Boris Kovalerchuk,
- Abstract summary: Interpretable interactive visual pattern discovery in 3D visualization is a promising way to advance machine learning.
It is conducted in 3D General Line Coordinates (GLC) visualization space, which preserves all n-D information in 3D.
- Score: 2.9465623430708905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretable interactive visual pattern discovery in lossless 3D visualization is a promising way to advance machine learning. It enables end users who are not data scientists to take control of the model development process as a self-service. It is conducted in 3D General Line Coordinates (GLC) visualization space, which preserves all n-D information in 3D. This paper presents a system which combines three types of GLC: Shifted Paired Coordinates (SPC), Shifted Tripled Coordinates (STC), and General Line Coordinates-Linear (GLC-L) for interactive visual pattern discovery. A transition from 2-D visualization to 3-D visualization allows for a more distinct visual pattern than in 2-D and it also allows for finding the best data viewing positions, which are not available in 2-D. It enables in-depth visual analysis of various class-specific data subsets comprehensible for end users in the original interpretable attributes. Controlling model overgeneralization by end users is an additional benefit of this approach.
Related papers
- GEAL: Generalizable 3D Affordance Learning with Cross-Modal Consistency [50.11520458252128]
Existing 3D affordance learning methods struggle with generalization and robustness due to limited annotated data.
We propose GEAL, a novel framework designed to enhance the generalization and robustness of 3D affordance learning by leveraging large-scale pre-trained 2D models.
GEAL consistently outperforms existing methods across seen and novel object categories, as well as corrupted data.
arXiv Detail & Related papers (2024-12-12T17:59:03Z) - Bootstraping Clustering of Gaussians for View-consistent 3D Scene Understanding [59.51535163599723]
FreeGS is an unsupervised semantic-embedded 3DGS framework that achieves view-consistent 3D scene understanding without the need for 2D labels.
We show that FreeGS performs comparably to state-of-the-art methods while avoiding the complex data preprocessing workload.
arXiv Detail & Related papers (2024-11-29T08:52:32Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Cross-Modal Self-Training: Aligning Images and Pointclouds to Learn Classification without Labels [69.55622471172941]
Large-scale vision 2D vision language models, such as CLIP can be aligned with a 3D encoder to learn generalizable (open-vocabulary) 3D vision models.
We propose an optimization framework: Cross-MoST: Cross-Modal Self-Training, to improve the label-free classification performance of a zero-shot 3D vision model.
arXiv Detail & Related papers (2024-04-15T21:30:50Z) - Every Dataset Counts: Scaling up Monocular 3D Object Detection with Joint Datasets Training [9.272389295055271]
This study investigates the pipeline for training a monocular 3D object detection model on a diverse collection of 3D and 2D datasets.
The proposed framework comprises three components: (1) a robust monocular 3D model capable of functioning across various camera settings, (2) a selective-training strategy to accommodate datasets with differing class annotations, and (3) a pseudo 3D training approach using 2D labels to enhance detection performance in scenes containing only 2D labels.
arXiv Detail & Related papers (2023-10-02T06:17:24Z) - Full High-Dimensional Intelligible Learning In 2-D Lossless
Visualization Space [7.005458308454871]
This study explores a new methodology for machine learning classification tasks in 2-D visualization space (2-D ML)
It is shown that this is a full machine learning approach that does not require processing n-dimensional data in an abstract n-dimensional space.
It enables discovering n-D patterns in 2-D space without loss of n-D information using graph representations of n-D data in 2-D.
arXiv Detail & Related papers (2023-05-29T00:21:56Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
We propose to utilize self-supervised techniques in the 2D domain for fine-grained 3D shape segmentation tasks.
We render a 3D shape from multiple views, and set up a dense correspondence learning task within the contrastive learning framework.
As a result, the learned 2D representations are view-invariant and geometrically consistent.
arXiv Detail & Related papers (2022-08-18T00:48:15Z) - Hierarchical View Predictor: Unsupervised 3D Global Feature Learning
through Hierarchical Prediction among Unordered Views [69.83935019958334]
We propose a view-based deep learning model called Hierarchical View Predictor.
HVP learns 3D shape features from unordered views in an unsupervised manner.
Our results show that HVP can outperform state-of-the-art methods under large-scale 3D shape benchmarks.
arXiv Detail & Related papers (2021-08-08T22:07:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.