Generating indistinguishability within identical particle systems:
spatial deformations as quantum resource activators
- URL: http://arxiv.org/abs/2205.12136v2
- Date: Fri, 5 Aug 2022 15:14:18 GMT
- Title: Generating indistinguishability within identical particle systems:
spatial deformations as quantum resource activators
- Authors: Matteo Piccolini, Farzam Nosrati, Gerardo Adesso, Roberto Morandotti,
Rosario Lo Franco
- Abstract summary: Identical quantum subsystems can possess a property which does not have any classical counterpart: indistinguishability.
We present a coherent formalization of the concept of deformation in a general $N$-particle scenario.
We discuss the inherent role of spatial deformations as entanglement activators within the "spatially localized operations and classical communication" operational framework.
- Score: 0.24466725954625884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identical quantum subsystems can possess a property which does not have any
classical counterpart: indistinguishability. As a long-debated phenomenon,
identical particles' indistinguishability has been shown to be at the heart of
various fundamental physical results. When concerned with the spatial degree of
freedom, identical constituents can be made indistinguishable by overlapping
their spatial wave functions via appropriately defined spatial deformations. By
the laws of quantum mechanics, any measurement designed to resolve a quantity
which depends on the spatial degree of freedom only and performed on the
regions of overlap is not able to assign the measured outcome to one specific
particle within the system. The result is an entangled state where the measured
property is shared between the identical constituents. In this work, we present
a coherent formalization of the concept of deformation in a general
$N$-particle scenario, together with a suitable measure of the degree of
indistinguishability. We highlight the basic differences with nonidentical
particles scenarios and discuss the inherent role of spatial deformations as
entanglement activators within the "spatially localized operations and
classical communication" operational framework.
Related papers
- Symmetries and singular behaviors with Bohmian trajectories [0.0]
This work focuses on how Bohmian mechanics proves to be a rather convenient theoretical framework to analyze phase-based phenomena.
Two interesting phenomena that take place in free space are considered, namely, the self-acceleration and shape-invariance of Airy beams, and spontaneous self-focusing.
arXiv Detail & Related papers (2024-07-10T23:58:56Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Physical interpretation of nonlocal quantum correlation through local
description of subsystems [19.542805787744133]
We propose the physical interpretation of nonlocal quantum correlation between two systems.
Different nonlocal quantum correlations can be discriminated from a single uncertainty relation derived under local hidden state (LHS)-LHS model only.
arXiv Detail & Related papers (2022-10-01T10:13:40Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Background Independence and Quantum Causal Structure [0.0]
One of the key ways in which quantum mechanics differs from relativity is that it requires a fixed background reference frame for spacetime.
A combination of the two theories is expected to yield non-classical, or "indefinite", causal structures.
We present a background-independent formulation of the process matrix formalism.
arXiv Detail & Related papers (2021-06-02T09:13:13Z) - Entanglement and non-locality in quantum protocols with identical
particles [0.0]
We study the role of entanglement and non-locality in quantum protocols that make use of systems of identical particles.
We show inconsistencies arise in formulations that force entanglement and non-locality to be properties of the identical particles rather than of the modes they can occupy.
arXiv Detail & Related papers (2021-04-13T12:55:47Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Dynamical symmetrization of the state of identical particles [0.0]
We propose a model for state symmetrization of two identical particles produced in spacelike-separated events by independent sources.
As the particles approach each other, a quantum jump takes place upon particle collision, which erases their distinguishability.
We show that symmetric measurements performed on identical particles can in principle discriminate between the product and symmetrized states.
arXiv Detail & Related papers (2020-11-17T18:56:28Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Localizable quantum coherence [0.0]
Coherence is a fundamental notion in quantum mechanics, defined relative to a reference basis.
We put forward a notion of localizable coherence as the coherence that can be stored in a particular subsystem.
We show that it can be applied to reveal the real-space structure of states of interest in quantum many-body theory.
arXiv Detail & Related papers (2020-05-06T17:44:05Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.