FreDo: Frequency Domain-based Long-Term Time Series Forecasting
- URL: http://arxiv.org/abs/2205.12301v1
- Date: Tue, 24 May 2022 18:19:15 GMT
- Title: FreDo: Frequency Domain-based Long-Term Time Series Forecasting
- Authors: Fan-Keng Sun and Duane S. Boning
- Abstract summary: We show that due to error accumulation, sophisticated models might not outperform baseline models for long-term forecasting.
We propose FreDo, a frequency domain-based neural network model that is built on top of the baseline model to enhance its performance.
- Score: 12.268979675200779
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to forecast far into the future is highly beneficial to many
applications, including but not limited to climatology, energy consumption, and
logistics. However, due to noise or measurement error, it is questionable how
far into the future one can reasonably predict. In this paper, we first
mathematically show that due to error accumulation, sophisticated models might
not outperform baseline models for long-term forecasting. To demonstrate, we
show that a non-parametric baseline model based on periodicity can actually
achieve comparable performance to a state-of-the-art Transformer-based model on
various datasets. We further propose FreDo, a frequency domain-based neural
network model that is built on top of the baseline model to enhance its
performance and which greatly outperforms the state-of-the-art model. Finally,
we validate that the frequency domain is indeed better by comparing univariate
models trained in the frequency v.s. time domain.
Related papers
- Fine-Tuning Image-Conditional Diffusion Models is Easier than You Think [53.2706196341054]
We show that the perceived inefficiency was caused by a flaw in the inference pipeline that has so far gone unnoticed.
We perform end-to-end fine-tuning on top of the single-step model with task-specific losses and get a deterministic model that outperforms all other diffusion-based depth and normal estimation models.
arXiv Detail & Related papers (2024-09-17T16:58:52Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
We introduce a novel modeling approach for time series imputation and forecasting, tailored to address the challenges often encountered in real-world data.
Our method relies on a continuous-time-dependent model of the series' evolution dynamics.
A modulation mechanism, driven by a meta-learning algorithm, allows adaptation to unseen samples and extrapolation beyond observed time-windows.
arXiv Detail & Related papers (2023-06-09T13:20:04Z) - Non-autoregressive Conditional Diffusion Models for Time Series
Prediction [3.9722979176564763]
TimeDiff is a non-autoregressive diffusion model that achieves high-quality time series prediction.
We show that TimeDiff consistently outperforms existing time series diffusion models.
arXiv Detail & Related papers (2023-06-08T08:53:59Z) - ScoreGrad: Multivariate Probabilistic Time Series Forecasting with
Continuous Energy-based Generative Models [10.337742174633052]
We propose ScoreGrad, a probabilistic time series forecasting framework based on continuous energy-based generative models.
ScoreGrad is composed of time series feature extraction module and conditional differential equation based score matching module.
It achieves state-of-the-art results on six real-world datasets.
arXiv Detail & Related papers (2021-06-18T13:22:12Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Improving the Accuracy of Global Forecasting Models using Time Series
Data Augmentation [7.38079566297881]
Forecasting models that are trained across sets of many time series, known as Global Forecasting Models (GFM), have shown promising results in forecasting competitions and real-world applications.
We propose a novel, data augmentation based forecasting framework that is capable of improving the baseline accuracy of GFM models in less data-abundant settings.
arXiv Detail & Related papers (2020-08-06T13:52:20Z) - Real Time Speech Enhancement in the Waveform Domain [99.02180506016721]
We present a causal speech enhancement model working on the raw waveform that runs in real-time on a laptop CPU.
The proposed model is based on an encoder-decoder architecture with skip-connections.
It is capable of removing various kinds of background noise including stationary and non-stationary noises.
arXiv Detail & Related papers (2020-06-23T09:19:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.