Toxicity Detection with Generative Prompt-based Inference
- URL: http://arxiv.org/abs/2205.12390v1
- Date: Tue, 24 May 2022 22:44:43 GMT
- Title: Toxicity Detection with Generative Prompt-based Inference
- Authors: Yau-Shian Wang and Yingshan Chang
- Abstract summary: It is a long-known risk that language models (LMs), once trained on corpus containing undesirable content, have the power to manifest biases and toxicity.
In this work, we explore the generative variant of zero-shot prompt-based toxicity detection with comprehensive trials on prompt engineering.
- Score: 3.9741109244650823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the subtleness, implicity, and different possible interpretations
perceived by different people, detecting undesirable content from text is a
nuanced difficulty. It is a long-known risk that language models (LMs), once
trained on corpus containing undesirable content, have the power to manifest
biases and toxicity. However, recent studies imply that, as a remedy, LMs are
also capable of identifying toxic content without additional fine-tuning.
Prompt-methods have been shown to effectively harvest this surprising
self-diagnosing capability. However, existing prompt-based methods usually
specify an instruction to a language model in a discriminative way. In this
work, we explore the generative variant of zero-shot prompt-based toxicity
detection with comprehensive trials on prompt engineering. We evaluate on three
datasets with toxicity labels annotated on social media posts. Our analysis
highlights the strengths of our generative classification approach both
quantitatively and qualitatively. Interesting aspects of self-diagnosis and its
ethical implications are discussed.
Related papers
- Unveiling the Implicit Toxicity in Large Language Models [77.90933074675543]
The open-endedness of large language models (LLMs) combined with their impressive capabilities may lead to new safety issues when being exploited for malicious use.
We show that LLMs can generate diverse implicit toxic outputs that are exceptionally difficult to detect via simply zero-shot prompting.
We propose a reinforcement learning (RL) based attacking method to further induce the implicit toxicity in LLMs.
arXiv Detail & Related papers (2023-11-29T06:42:36Z) - Detoxifying Text with MaRCo: Controllable Revision with Experts and
Anti-Experts [57.38912708076231]
We introduce MaRCo, a detoxification algorithm that combines controllable generation and text rewriting methods.
MaRCo uses likelihoods under a non-toxic LM and a toxic LM to find candidate words to mask and potentially replace.
We evaluate our method on several subtle toxicity and microaggressions datasets, and show that it not only outperforms baselines on automatic metrics, but MaRCo's rewrites are preferred 2.1 $times$ more in human evaluation.
arXiv Detail & Related papers (2022-12-20T18:50:00Z) - Leashing the Inner Demons: Self-Detoxification for Language Models [13.576289320208511]
Language models (LMs) can reproduce (or amplify) toxic language seen during training.
We analyze the impact of prompts, decoding strategies and training corpora on the output.
We propose a simple yet effective method for language models to "detoxify" themselves without an additional large corpus or external discriminator.
arXiv Detail & Related papers (2022-03-06T23:55:12Z) - Handling Bias in Toxic Speech Detection: A Survey [26.176340438312376]
We look at proposed methods for evaluating and mitigating bias in toxic speech detection.
Case study introduces the concept of bias shift due to knowledge-based bias mitigation.
Survey concludes with an overview of the critical challenges, research gaps, and future directions.
arXiv Detail & Related papers (2022-01-26T10:38:36Z) - Toxicity Detection can be Sensitive to the Conversational Context [64.28043776806213]
We construct and publicly release a dataset of 10,000 posts with two kinds of toxicity labels.
We introduce a new task, context sensitivity estimation, which aims to identify posts whose perceived toxicity changes if the context is also considered.
arXiv Detail & Related papers (2021-11-19T13:57:26Z) - Mitigating Biases in Toxic Language Detection through Invariant
Rationalization [70.36701068616367]
biases toward some attributes, including gender, race, and dialect, exist in most training datasets for toxicity detection.
We propose to use invariant rationalization (InvRat), a game-theoretic framework consisting of a rationale generator and a predictor, to rule out the spurious correlation of certain syntactic patterns.
Our method yields lower false positive rate in both lexical and dialectal attributes than previous debiasing methods.
arXiv Detail & Related papers (2021-06-14T08:49:52Z) - Challenges in Automated Debiasing for Toxic Language Detection [81.04406231100323]
Biased associations have been a challenge in the development of classifiers for detecting toxic language.
We investigate recently introduced debiasing methods for text classification datasets and models, as applied to toxic language detection.
Our focus is on lexical (e.g., swear words, slurs, identity mentions) and dialectal markers (specifically African American English)
arXiv Detail & Related papers (2021-01-29T22:03:17Z) - RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language
Models [93.151822563361]
Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment.
We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration.
arXiv Detail & Related papers (2020-09-24T03:17:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.