ShieldVLM: Safeguarding the Multimodal Implicit Toxicity via Deliberative Reasoning with LVLMs
- URL: http://arxiv.org/abs/2505.14035v1
- Date: Tue, 20 May 2025 07:31:17 GMT
- Title: ShieldVLM: Safeguarding the Multimodal Implicit Toxicity via Deliberative Reasoning with LVLMs
- Authors: Shiyao Cui, Qinglin Zhang, Xuan Ouyang, Renmiao Chen, Zhexin Zhang, Yida Lu, Hongning Wang, Han Qiu, Minlie Huang,
- Abstract summary: Multimodal implicit toxicity appears not only as formal statements in social platforms but also prompts that can lead to toxic dialogs.<n>Despite the success in unimodal text or image moderation, toxicity detection for multimodal content, particularly the multimodal implicit toxicity, remains underexplored.<n>To advance the detection of multimodal implicit toxicity, we build ShieldVLM, a model which identifies implicit toxicity in multimodal statements, prompts and dialogs via deliberative cross-modal reasoning.
- Score: 72.8646625127485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Toxicity detection in multimodal text-image content faces growing challenges, especially with multimodal implicit toxicity, where each modality appears benign on its own but conveys hazard when combined. Multimodal implicit toxicity appears not only as formal statements in social platforms but also prompts that can lead to toxic dialogs from Large Vision-Language Models (LVLMs). Despite the success in unimodal text or image moderation, toxicity detection for multimodal content, particularly the multimodal implicit toxicity, remains underexplored. To fill this gap, we comprehensively build a taxonomy for multimodal implicit toxicity (MMIT) and introduce an MMIT-dataset, comprising 2,100 multimodal statements and prompts across 7 risk categories (31 sub-categories) and 5 typical cross-modal correlation modes. To advance the detection of multimodal implicit toxicity, we build ShieldVLM, a model which identifies implicit toxicity in multimodal statements, prompts and dialogs via deliberative cross-modal reasoning. Experiments show that ShieldVLM outperforms existing strong baselines in detecting both implicit and explicit toxicity. The model and dataset will be publicly available to support future researches. Warning: This paper contains potentially sensitive contents.
Related papers
- Align is not Enough: Multimodal Universal Jailbreak Attack against Multimodal Large Language Models [83.80177564873094]
We propose a unified multimodal universal jailbreak attack framework.<n>We evaluate the undesirable context generation of MLLMs like LLaVA, Yi-VL, MiniGPT4, MiniGPT-v2, and InstructBLIP.<n>This study underscores the urgent need for robust safety measures in MLLMs.
arXiv Detail & Related papers (2025-06-02T04:33:56Z) - MDIT-Bench: Evaluating the Dual-Implicit Toxicity in Large Multimodal Models [16.3469883819979]
We introduce a subtler type of toxicity named dual-implicit toxicity and a novel toxicity benchmark termed MDIT-Bench: Multimodal Dual-Implicit Toxicity Benchmark.<n>MDIT-Bench is a benchmark for evaluating the sensitivity of models to dual-implicit toxicity, with 317,638 questions covering 12 categories, 23 subcategories, and 780 topics.<n>In the experiment, we conducted MDIT-Bench on 13 prominent LMMs, and the results show that these LMMs cannot handle dual-implicit toxicity effectively.
arXiv Detail & Related papers (2025-05-22T07:30:01Z) - Understanding and Mitigating Toxicity in Image-Text Pretraining Datasets: A Case Study on LLaVA [0.0]
This dataset removes 7,531 of toxic image-text pairs in the LLaVA pre-training dataset.<n>We offer guidelines for implementing robust toxicity detection pipelines.
arXiv Detail & Related papers (2025-05-09T18:01:50Z) - MIRAGE: Multimodal Immersive Reasoning and Guided Exploration for Red-Team Jailbreak Attacks [85.3303135160762]
MIRAGE is a novel framework that exploits narrative-driven context and role immersion to circumvent safety mechanisms in Multimodal Large Language Models.<n>It achieves state-of-the-art performance, improving attack success rates by up to 17.5% over the best baselines.<n>We demonstrate that role immersion and structured semantic reconstruction can activate inherent model biases, facilitating the model's spontaneous violation of ethical safeguards.
arXiv Detail & Related papers (2025-03-24T20:38:42Z) - Aligned Probing: Relating Toxic Behavior and Model Internals [66.49887503194101]
We introduce aligned probing, a novel interpretability framework that aligns the behavior of language models (LMs)<n>Using this framework, we examine over 20 OLMo, Llama, and Mistral models, bridging behavioral and internal perspectives for toxicity for the first time.<n>Our results show that LMs strongly encode information about the toxicity level of inputs and subsequent outputs, particularly in lower layers.
arXiv Detail & Related papers (2025-03-17T17:23:50Z) - Towards Probing Speech-Specific Risks in Large Multimodal Models: A Taxonomy, Benchmark, and Insights [50.89022445197919]
We propose a speech-specific risk taxonomy, covering 8 risk categories under hostility (malicious sarcasm and threats), malicious imitation (age, gender, ethnicity), and stereotypical biases (age, gender, ethnicity)
Based on the taxonomy, we create a small-scale dataset for evaluating current LMMs capability in detecting these categories of risk.
arXiv Detail & Related papers (2024-06-25T10:08:45Z) - Unveiling the Implicit Toxicity in Large Language Models [77.90933074675543]
The open-endedness of large language models (LLMs) combined with their impressive capabilities may lead to new safety issues when being exploited for malicious use.
We show that LLMs can generate diverse implicit toxic outputs that are exceptionally difficult to detect via simply zero-shot prompting.
We propose a reinforcement learning (RL) based attacking method to further induce the implicit toxicity in LLMs.
arXiv Detail & Related papers (2023-11-29T06:42:36Z) - Inconsistent Matters: A Knowledge-guided Dual-consistency Network for
Multi-modal Rumor Detection [53.48346699224921]
A novel Knowledge-guided Dualconsistency Network is proposed to detect rumors with multimedia contents.
It uses two consistency detectionworks to capture the inconsistency at the cross-modal level and the content-knowledge level simultaneously.
It also enables robust multi-modal representation learning under different missing visual modality conditions.
arXiv Detail & Related papers (2023-06-03T15:32:20Z) - Rethinking Multimodal Content Moderation from an Asymmetric Angle with
Mixed-modality [14.594707272134414]
There is a rapidly growing need for multimodal content moderation (CM) on social media.
Existing unimodal CM systems may fail to catch harmful content that crosses modalities.
We present a novel CM model, Asymmetric Mixed-Modal Moderation (AM3), to target multimodal and unimodal CM tasks.
arXiv Detail & Related papers (2023-05-17T20:06:29Z) - Robustness of Fusion-based Multimodal Classifiers to Cross-Modal Content
Dilutions [27.983902791798965]
We develop a model that generates dilution text that maintains relevance and topical coherence with the image and existing text.
We find that the performance of task-specific fusion-based multimodal classifiers drops by 23.3% and 22.5%, respectively, in the presence of dilutions generated by our model.
Our work aims to highlight and encourage further research on the robustness of deep multimodal models to realistic variations.
arXiv Detail & Related papers (2022-11-04T17:58:02Z) - Toxicity Detection with Generative Prompt-based Inference [3.9741109244650823]
It is a long-known risk that language models (LMs), once trained on corpus containing undesirable content, have the power to manifest biases and toxicity.
In this work, we explore the generative variant of zero-shot prompt-based toxicity detection with comprehensive trials on prompt engineering.
arXiv Detail & Related papers (2022-05-24T22:44:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.