Skin Cancer Diagnostics with an All-Inclusive Smartphone Application
- URL: http://arxiv.org/abs/2205.12438v1
- Date: Wed, 25 May 2022 02:02:08 GMT
- Title: Skin Cancer Diagnostics with an All-Inclusive Smartphone Application
- Authors: Upender Kalwa, Christopher Legner, Taejoon Kong, Santosh Pandey
- Abstract summary: There is significant interest in developing portable, at-home melanoma diagnostic systems.
Here, we present a smartphone application that combines image capture capabilities with preprocessing and segmentation.
Our approach is made computationally light, user friendly, and reliable in discriminating melanoma cases from benign ones.
- Score: 2.840144824279212
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Among the different types of skin cancer, melanoma is considered to be the
deadliest and is difficult to treat at advanced stages. Detection of melanoma
at earlier stages can lead to reduced mortality rates. Desktop-based
computer-aided systems have been developed to assist dermatologists with early
diagnosis. However, there is significant interest in developing portable,
at-home melanoma diagnostic systems which can assess the risk of cancerous skin
lesions. Here, we present a smartphone application that combines image capture
capabilities with preprocessing and segmentation to extract the Asymmetry,
Border irregularity, Color variegation, and Diameter (ABCD) features of a skin
lesion. Using the feature sets, classification of malignancy is achieved
through support vector machine classifiers. By using adaptive algorithms in the
individual data-processing stages, our approach is made computationally light,
user friendly, and reliable in discriminating melanoma cases from benign ones.
Images of skin lesions are either captured with the smartphone camera or
imported from public datasets. The entire process from image capture to
classification runs on an Android smartphone equipped with a detachable 10x
lens, and processes an image in less than a second. The overall performance
metrics are evaluated on a public database of 200 images with Synthetic
Minority Over-sampling Technique (SMOTE) (80% sensitivity, 90% specificity, 88%
accuracy, and 0.85 area under curve (AUC)) and without SMOTE (55% sensitivity,
95% specificity, 90% accuracy, and 0.75 AUC). The evaluated performance metrics
and computation times are comparable or better than previous methods. This
all-inclusive smartphone application is designed to be easy-to-download and
easy-to-navigate for the end user, which is imperative for the eventual
democratization of such medical diagnostic systems.
Related papers
- Enhancing Skin Disease Diagnosis: Interpretable Visual Concept Discovery with SAM Empowerment [41.398287899966995]
Current AI-assisted skin image diagnosis has achieved dermatologist-level performance in classifying skin cancer.
We propose a novel Cross-Attentive Fusion framework for interpretable skin lesion diagnosis.
arXiv Detail & Related papers (2024-09-14T20:11:25Z) - Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
Computer-aided diagnosis can help with early lung nodul detection and facilitate subsequent nodule characterization.
We propose CADe, for segmenting lung nodules in a zero-shot manner using a variant of the Segment Anything Model called MedSAM.
We also propose, CADx, a method for the nodule characterization as benign/malignant by making a gallery of radiomic features and aligning image-feature pairs through contrastive learning.
arXiv Detail & Related papers (2024-07-02T19:30:25Z) - Clinical Melanoma Diagnosis with Artificial Intelligence: Insights from
a Prospective Multicenter Study [1.2397589403129072]
AI has proven to be helpful for enhancing melanoma detection.
Existing studies are limited by low sample sizes, too homogenous datasets, or lack of inclusion of rare melanoma subtypes.
We assessed 'All Data are Ext' (ADAE), an established open-source algorithm for detecting melanomas, by comparing its diagnostic accuracy to that of dermatologists.
arXiv Detail & Related papers (2024-01-25T14:03:54Z) - Skin Lesion Diagnosis Using Convolutional Neural Networks [0.30458514384586394]
This project aims to address the issue by collecting state-of-the-art techniques for image classification from various fields.
The models were trained using a dataset of 8012 images, and their performance was evaluated using 2003 images.
It's worth noting that this model is trained end-to-end, directly from the image to the labels, without the need for handcrafted feature extraction.
arXiv Detail & Related papers (2023-05-18T17:15:08Z) - Increasing Melanoma Diagnostic Confidence: Forcing the Convolutional
Network to Learn from the Lesion [0.9143713488498512]
We propose a novel technique to improve melanoma recognition by an EfficientNet model.
The model trains the network to detect the lesion and learn features from the detected lesion.
Test results show that the proposed method improved diagnostic accuracy by increasing the mean area under receiver operating characteristic curve (mean AUC) score from 0.9 to 0.922.
arXiv Detail & Related papers (2023-05-16T15:34:12Z) - Extended Feature Space-Based Automatic Melanoma Detection System [9.165013127586267]
Melanoma is the deadliest form of skin cancer. Uncontrollable growth of melanocytes leads to melanoma.
The Automatic Melanoma Detection System (AMDS) helps to detect melanoma based on image processing techniques.
A novel algorithm ExtFvAMDS is proposed for the calculation of Extended Feature Vector Space.
arXiv Detail & Related papers (2022-09-10T04:15:45Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Melanoma Diagnosis with Spatio-Temporal Feature Learning on Sequential
Dermoscopic Images [40.743870665742975]
Existing dermatologists for automated melanoma diagnosis are based on single-time point images of lesions.
We propose an automated framework for melanoma diagnosis using sequential dermoscopic images.
arXiv Detail & Related papers (2020-06-19T04:08:22Z) - AI outperformed every dermatologist: Improved dermoscopic melanoma
diagnosis through customizing batch logic and loss function in an optimized
Deep CNN architecture [2.572959153453185]
This study proposes a method using deep convolutional neural networks aiming to detect melanoma as a binary classification problem.
It involves 3 key features, namely customized batch logic, customized loss function and reformed fully connected layers.
The model outperformed all 157 dermatologists and achieved state-of-the-art performance with AUC at 94.4% with sensitivity of 85.0% and specificity of 95.0%.
arXiv Detail & Related papers (2020-03-05T13:19:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.