Skin Lesion Diagnosis Using Convolutional Neural Networks
- URL: http://arxiv.org/abs/2305.11125v1
- Date: Thu, 18 May 2023 17:15:08 GMT
- Title: Skin Lesion Diagnosis Using Convolutional Neural Networks
- Authors: Daniel Alonso Villanueva Nunez and Yongmin Li
- Abstract summary: This project aims to address the issue by collecting state-of-the-art techniques for image classification from various fields.
The models were trained using a dataset of 8012 images, and their performance was evaluated using 2003 images.
It's worth noting that this model is trained end-to-end, directly from the image to the labels, without the need for handcrafted feature extraction.
- Score: 0.30458514384586394
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cancerous skin lesions are one of the most common malignancies detected in
humans, and if not detected at an early stage, they can lead to death.
Therefore, it is crucial to have access to accurate results early on to
optimize the chances of survival. Unfortunately, accurate results are typically
obtained by highly trained dermatologists, who may not be accessible to many
people, particularly in low-income and middle-income countries. Artificial
Intelligence (AI) appears to be a potential solution to this problem, as it has
proven to provide equal or even better diagnoses than healthcare professionals.
This project aims to address the issue by collecting state-of-the-art
techniques for image classification from various fields and implementing them.
Some of these techniques include mixup, presizing, and test-time augmentation,
among others. Three architectures were used for the implementation:
DenseNet121, VGG16 with batch normalization, and ResNet50. The models were
designed with two main purposes. First, to classify images into seven
categories, including melanocytic nevus, melanoma, benign keratosis-like
lesions, basal cell carcinoma, actinic keratoses and intraepithelial carcinoma,
vascular lesions, and dermatofibroma. Second, to classify images into benign or
malignant. The models were trained using a dataset of 8012 images, and their
performance was evaluated using 2003 images. It's worth noting that this model
is trained end-to-end, directly from the image to the labels, without the need
for handcrafted feature extraction.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - A Comparative Analysis Towards Melanoma Classification Using Transfer
Learning by Analyzing Dermoscopic Images [0.0]
This paper presents a system that combines deep learning techniques with established transfer learning methods to enable skin lesions classification and diagnosis of melanoma skin lesions.
Researchers used 'Deep Learning' techniques to train an expansive number of photos & essentially to get the expected result.
DenseNet performed better than the others which gives a validation accuracy of 96.64%, validation loss of 9.43% & test set accuracy of 99.63%.
arXiv Detail & Related papers (2023-12-02T19:46:48Z) - Histopathological Imaging Classification of Breast Tissue for Cancer
Diagnosis Support Using Deep Learning Models [0.0]
Hematoxylin and Eosin are considered the gold standard for cancer diagnoses.
Based on the idea of dividing the pathologic image (WSI) into multiple patches, we used the window [512,512] sliding from left to right and sliding from top to bottom, each sliding step overlapping by 50% to augmented data on a dataset of 400 images.
The EffficientNet model is a recently developed model that uniformly scales the width, depth, and resolution of the network with a set of fixed scaling factors that are well suited for training images with high resolution.
arXiv Detail & Related papers (2022-07-03T13:56:44Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Classification of Skin Cancer Images using Convolutional Neural Networks [0.0]
Skin cancer is the most common human malignancy.
Deep neural networks show humongous potential for image classification.
Highest model accuracy achieved was over 86.65%.
arXiv Detail & Related papers (2022-02-01T17:11:41Z) - BCNet: A Deep Convolutional Neural Network for Breast Cancer Grading [0.0]
Deep learning has been recently adopted widely in different areas of science, especially medicine.
In breast cancer detection problems, some diverse deep learning techniques have been developed on different datasets and resulted in good accuracy.
arXiv Detail & Related papers (2021-07-11T12:55:33Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Method to Classify Skin Lesions using Dermoscopic images [0.0]
Skin cancer is the most common cancer in the existing world constituting one-third of the cancer cases.
In this project, an automated model for skin lesion classification using dermoscopic images has been developed with CNN(Convolution Neural Networks) as a training model.
The best accuracy this model could achieve is 0.886.
arXiv Detail & Related papers (2020-08-21T10:58:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.