Structure Aware and Class Balanced 3D Object Detection on nuScenes
Dataset
- URL: http://arxiv.org/abs/2205.12519v1
- Date: Wed, 25 May 2022 06:18:49 GMT
- Title: Structure Aware and Class Balanced 3D Object Detection on nuScenes
Dataset
- Authors: Sushruth Nagesh, Asfiya Baig, Savitha Srinivasan
- Abstract summary: NuTonomy's nuScenes dataset greatly extends commonly used datasets such as KITTI.
The localization precision of this model is affected by the loss of spatial information in the downscaled feature maps.
We propose to enhance the performance of the CBGS model by designing an auxiliary network, that makes full use of the structure information of the 3D point cloud.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3-D object detection is pivotal for autonomous driving. Point cloud based
methods have become increasingly popular for 3-D object detection, owing to
their accurate depth information. NuTonomy's nuScenes dataset greatly extends
commonly used datasets such as KITTI in size, sensor modalities, categories,
and annotation numbers. However, it suffers from severe class imbalance. The
Class-balanced Grouping and Sampling paper addresses this issue and suggests
augmentation and sampling strategy. However, the localization precision of this
model is affected by the loss of spatial information in the downscaled feature
maps. We propose to enhance the performance of the CBGS model by designing an
auxiliary network, that makes full use of the structure information of the 3D
point cloud, in order to improve the localization accuracy. The detachable
auxiliary network is jointly optimized by two point-level supervisions, namely
foreground segmentation and center estimation. The auxiliary network does not
introduce any extra computation during inference, since it can be detached at
test time.
Related papers
- Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - 3D Object Detection Combining Semantic and Geometric Features from Point
Clouds [19.127930862527666]
We propose a novel end-to-end two-stage 3D object detector named SGNet for point clouds scenes.
The VTPM is a Voxel-Point-Based Module that finally implements 3D object detection in point space.
As of September 19, 2021, for KITTI dataset, SGNet ranked 1st in 3D and BEV detection on cyclists with easy difficulty level, and 2nd in the 3D detection of moderate cyclists.
arXiv Detail & Related papers (2021-10-10T04:43:27Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z) - H3D: Benchmark on Semantic Segmentation of High-Resolution 3D Point
Clouds and textured Meshes from UAV LiDAR and Multi-View-Stereo [4.263987603222371]
This paper introduces a 3D dataset which is unique in three ways.
It depicts the village of Hessigheim (Germany) henceforth referred to as H3D.
It is designed for promoting research in the field of 3D data analysis on one hand and to evaluate and rank emerging approaches.
arXiv Detail & Related papers (2021-02-10T09:33:48Z) - SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection [9.924083358178239]
We propose two variants of self-attention for contextual modeling in 3D object detection.
We first incorporate the pairwise self-attention mechanism into the current state-of-the-art BEV, voxel and point-based detectors.
Next, we propose a self-attention variant that samples a subset of the most representative features by learning deformations over randomly sampled locations.
arXiv Detail & Related papers (2021-01-07T18:30:32Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
Point cloud semantic segmentation plays an essential role in autonomous driving.
Current 3D semantic segmentation networks focus on convolutional architectures that perform great for well represented classes.
We propose a novel Aware 3D Semantic Detection (DASS) framework that explicitly leverages localization features from an auxiliary 3D object detection task.
arXiv Detail & Related papers (2020-09-22T14:17:40Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
We propose a novel 3D object detection framework with dynamic information modeling.
Coarse predictions are generated in the first stage via a voxel-based region proposal network.
Experiments are conducted on the large-scale nuScenes 3D detection benchmark.
arXiv Detail & Related papers (2020-07-16T18:27:08Z) - D3Feat: Joint Learning of Dense Detection and Description of 3D Local
Features [51.04841465193678]
We leverage a 3D fully convolutional network for 3D point clouds.
We propose a novel and practical learning mechanism that densely predicts both a detection score and a description feature for each 3D point.
Our method achieves state-of-the-art results in both indoor and outdoor scenarios.
arXiv Detail & Related papers (2020-03-06T12:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.