Structured Uncertainty in the Observation Space of Variational
Autoencoders
- URL: http://arxiv.org/abs/2205.12533v1
- Date: Wed, 25 May 2022 07:12:50 GMT
- Title: Structured Uncertainty in the Observation Space of Variational
Autoencoders
- Authors: James Langley, Miguel Monteiro, Charles Jones, Nick Pawlowski, Ben
Glocker
- Abstract summary: In image synthesis, sampling from such distributions produces spatially-incoherent results with uncorrelated pixel noise.
We propose an alternative model for the observation space, encoding spatial dependencies via a low-rank parameterisation.
In contrast to pixel-wise independent distributions, our samples seem to contain semantically meaningful variations from the mean allowing the prediction of multiple plausible outputs.
- Score: 20.709989481734794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational autoencoders (VAEs) are a popular class of deep generative models
with many variants and a wide range of applications. Improvements upon the
standard VAE mostly focus on the modelling of the posterior distribution over
the latent space and the properties of the neural network decoder. In contrast,
improving the model for the observational distribution is rarely considered and
typically defaults to a pixel-wise independent categorical or normal
distribution. In image synthesis, sampling from such distributions produces
spatially-incoherent results with uncorrelated pixel noise, resulting in only
the sample mean being somewhat useful as an output prediction. In this paper,
we aim to stay true to VAE theory by improving the samples from the
observational distribution. We propose an alternative model for the observation
space, encoding spatial dependencies via a low-rank parameterisation. We
demonstrate that this new observational distribution has the ability to capture
relevant covariance between pixels, resulting in spatially-coherent samples. In
contrast to pixel-wise independent distributions, our samples seem to contain
semantically meaningful variations from the mean allowing the prediction of
multiple plausible outputs with a single forward pass.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Deep Generative Sampling in the Dual Divergence Space: A Data-efficient & Interpretative Approach for Generative AI [29.13807697733638]
We build on the remarkable achievements in generative sampling of natural images.
We propose an innovative challenge, potentially overly ambitious, which involves generating samples that resemble images.
The statistical challenge lies in the small sample size, sometimes consisting of a few hundred subjects.
arXiv Detail & Related papers (2024-04-10T22:35:06Z) - Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective [6.845698872290768]
Anomaly detection (AD) is the machine learning task of identifying highly discrepant abnormal samples.
Under the constraints of a distribution shift, the assumption that training samples and test samples are drawn from the same distribution breaks down.
We attempt to increase the resilience of anomaly detection models to different kinds of distribution shifts.
arXiv Detail & Related papers (2023-12-21T23:20:47Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
We propose emphProjection Regret (PR), an efficient novelty detection method that mitigates the bias of non-semantic information.
PR computes the perceptual distance between the test image and its diffusion-based projection to detect abnormality.
Extensive experiments demonstrate that PR outperforms the prior art of generative-model-based novelty detection methods by a significant margin.
arXiv Detail & Related papers (2023-12-05T09:44:47Z) - Rethinking Polyp Segmentation from an Out-of-Distribution Perspective [37.1338930936671]
We leverage the ability of masked autoencoders -- self-supervised vision transformers trained on a reconstruction task -- to learn in-distribution representations.
We perform out-of-distribution reconstruction and inference, with feature space standardisation to align the latent distribution of the diverse abnormal samples with the statistics of the healthy samples.
Experimental results on six benchmarks show that our model has excellent segmentation performance and generalises across datasets.
arXiv Detail & Related papers (2023-06-13T14:13:16Z) - Modelling nonlinear dependencies in the latent space of inverse
scattering [1.5990720051907859]
In inverse scattering proposed by Angles and Mallat, a deep neural network is trained to invert the scattering transform applied to an image.
After such a network is trained, it can be used as a generative model given that we can sample from the distribution of principal components of scattering coefficients.
Within this paper, two such models are explored, namely a Variational AutoEncoder and a Generative Adversarial Network.
arXiv Detail & Related papers (2022-03-19T12:07:43Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
Particle filtering is used to compute good nonlinear estimates of complex systems.
We show in simulations that the resulting particle filter yields good estimates in a wide range of scenarios.
arXiv Detail & Related papers (2021-10-06T16:58:34Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - CQ-VAE: Coordinate Quantized VAE for Uncertainty Estimation with
Application to Disk Shape Analysis from Lumbar Spine MRI Images [1.5841288368322592]
We propose a powerful generative model to learn a representation of ambiguity and to generate probabilistic outputs.
Our model, named Coordinate Quantization Variational Autoencoder (CQ-VAE), employs a discrete latent space with an internal discrete probability distribution.
A matching algorithm is used to establish the correspondence between model-generated samples and "ground-truth" samples.
arXiv Detail & Related papers (2020-10-17T04:25:32Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
Building on the success of deep learning, Generative Adversarial Networks (GANs) provide a modern approach to learn a probability distribution from observed samples.
GANs often suffer from the mode collapse issue where the generator fails to capture all existing modes of the input distribution.
We take an information-theoretic approach and maximize a variational lower bound on the entropy of the generated samples to increase their diversity.
arXiv Detail & Related papers (2020-09-24T19:34:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.