論文の概要: DialogZoo: Large-Scale Dialog-Oriented Task Learning
- arxiv url: http://arxiv.org/abs/2205.12662v1
- Date: Wed, 25 May 2022 11:17:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-26 14:40:01.644549
- Title: DialogZoo: Large-Scale Dialog-Oriented Task Learning
- Title(参考訳): DialogZoo: 大規模対話型タスク学習
- Authors: Zhi Chen, Jijia Bao, Lu Chen, Yuncong Liu, Da Ma, Bei Chen, Mengyue
Wu, Su Zhu, Jian-Guang Lou and Kai Yu
- Abstract要約: 我々は,多種多様な対話課題を解くための統合基盤モデルの構築を目指している。
この目的を達成するために、73の公開データセットから、まず大規模なラベル付き対話データセットを収集する。
- 参考スコア(独自算出の注目度): 52.18193690394549
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building unified conversational agents has been a long-standing goal of the
dialogue research community. Most previous works only focus on a subset of
various dialogue tasks. In this work, we aim to build a unified foundation
model which can solve massive diverse dialogue tasks. To achieve this goal, we
first collect a large-scale well-labeled dialogue dataset from 73 publicly
available datasets. In addition to this dataset, we further propose two
dialogue-oriented self-supervised tasks, and finally use the mixture of
supervised and self-supervised datasets to train our foundation model. The
supervised examples make the model learn task-specific skills, while the
self-supervised examples make the model learn more general skills. We evaluate
our model on various downstream dialogue tasks. The experimental results show
that our method not only improves the ability of dialogue generation and
knowledge distillation, but also the representation ability of models.
- Abstract(参考訳): 統合会話エージェントの構築は、対話研究コミュニティの長年の目標である。
以前の作品のほとんどは、様々な対話タスクのサブセットのみに焦点を当てていた。
本研究では,多種多様な対話課題を解決できる統一基盤モデルの構築を目指している。
この目的を達成するために、73の公開データセットから、まず大規模なラベル付き対話データセットを収集する。
このデータセットに加えて,対話指向の自己教師付きタスクを2つ提案し,最終的に教師付きデータセットと自己教師付きデータセットを組み合わせて基礎モデルを訓練する。
教師付き例はモデルにタスク固有のスキルを学習させ、自己監督例はモデルにより一般的なスキルを学習させる。
様々な下流対話課題におけるモデルの評価を行った。
実験結果から,本手法は対話生成能力や知識蒸留能力だけでなく,モデルの表現能力も向上することが示された。
関連論文リスト
- Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
大規模言語モデル(LLM)の理解能力を高めるための新たな「自己説明(Self-Explanation)」を提案する。
このタスクに依存しないアプローチでは、タスク実行前の各対話発話を分析し、様々な対話中心のタスクのパフォーマンスを向上させる必要がある。
6つのベンチマークデータセットによる実験結果から,本手法は他のゼロショットプロンプトよりも一貫して優れており,数ショットプロンプトの有効性を超えていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-22T15:41:34Z) - Dialogue Agents 101: A Beginner's Guide to Critical Ingredients for Designing Effective Conversational Systems [29.394466123216258]
本研究は,対話エージェントの主要な特徴,対応するオープンドメインデータセット,およびこれらのデータセットをベンチマークする手法について概説する。
我々は,既存のデータセットの会話から構築された統一dIalogue dataseTであるUNITを提案する。
論文 参考訳(メタデータ) (2023-07-14T10:05:47Z) - Improving Zero and Few-shot Generalization in Dialogue through
Instruction Tuning [27.92734269206744]
InstructDialは対話のための命令チューニングフレームワークである。
48の多様な対話タスクからなるリポジトリからなり、59のオープンな対話データセットから作成されるテキストとテキストの統一フォーマットである。
分析の結果,InstructDialは未知のデータセットや対話評価や意図検出などのタスクに対して良好なゼロショット性能を実現し,数ショット設定でさらに優れたパフォーマンスを実現していることがわかった。
論文 参考訳(メタデータ) (2022-05-25T11:37:06Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
対話システム研究における既存の研究は、主にタスク指向の対話とチャットを独立したドメインとして扱う。
本研究では,タスク指向対話と知識ベースチップチャットを一つのモデルに効果的に統合する方法について検討する。
論文 参考訳(メタデータ) (2022-05-11T16:01:03Z) - DialoGLUE: A Natural Language Understanding Benchmark for Task-Oriented
Dialogue [17.729711165119472]
本研究では,4つの自然言語理解タスクをカバーする7つのタスク指向対話データセットからなる公開ベンチマークであるDialoGLUE(Dialogue Language Understanding Evaluation)を紹介する。
我々は、いくつかの強力なベースラインモデルをリリースし、バニラBERTアーキテクチャの性能改善と、7つのタスクのうち5つの最先端の結果を示します。
DialoGLUEベンチマーク、ベースライン手法、評価スクリプトを通じて、我々はより汎用的なタスク指向対話モデルを開発する目標に向けて前進したいと考えている。
論文 参考訳(メタデータ) (2020-09-28T18:36:23Z) - Modeling Long Context for Task-Oriented Dialogue State Generation [51.044300192906995]
本稿では,シンプルで効果的な発話タグ付け手法と双方向言語モデルを用いたマルチタスク学習モデルを提案する。
提案手法は,入力対話コンテキストシーケンスが長い場合に,ベースラインの性能が著しく低下する,という問題を解決する。
本実験では,MultiWOZ 2.0データセットにおいて,ベースラインに対して7.03%の相対的改善を実現し,新しい最先端のジョイントゴール精度を52.04%に設定した。
論文 参考訳(メタデータ) (2020-04-29T11:02:25Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
本研究では,言語モデリングのためのタスク指向対話データセットを,人間とマルチターンの9つに統合する。
事前学習時の対話動作をモデル化するために,ユーザトークンとシステムトークンをマスク付き言語モデルに組み込む。
論文 参考訳(メタデータ) (2020-04-15T04:09:05Z) - Variational Hierarchical Dialog Autoencoder for Dialog State Tracking
Data Augmentation [59.174903564894954]
本研究では,この手法を,ゴール指向対話のための対話状態追跡タスクに拡張する。
目的指向ダイアログの完全な側面をモデル化するための変分階層型ダイアログオートエンコーダ(VHDA)を提案する。
各種ダイアログデータセットを用いた実験により、生成データ拡張による下流ダイアログトラッカーのロバスト性の向上が示された。
論文 参考訳(メタデータ) (2020-01-23T15:34:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。